期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Strong Convergence of Empirical Distribution for a Class of Random Matrices
1
作者 LIANG Qing-wen MIAO Bai-qi WANG Da-peng 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第1期28-32,共5页
Let {vij}, i, j = 1, 2, …, be i.i.d, random variables with Ev11 = 0, Ev11^2 = 1 and a1 = (ai1,…, aiM) be random vectors with {aij} being i.i.d, random variables. Define XN =(x1,…, xk) and SN =XNXN^T,where xi=ai... Let {vij}, i, j = 1, 2, …, be i.i.d, random variables with Ev11 = 0, Ev11^2 = 1 and a1 = (ai1,…, aiM) be random vectors with {aij} being i.i.d, random variables. Define XN =(x1,…, xk) and SN =XNXN^T,where xi=ai×si and si=1/√N(v1i,…, vN,i)^T. The spectral distribution of SN is proven to converge, with probability one, to a nonrandom distribution function under mild conditions. 展开更多
关键词 empirical spectral distribution function sample covariance matrix Stieltjes transform strong convergence
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部