The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are est...The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are established, which play important roles in the related numerical methods for unbounded domains. As an example, the modified Laguerre spectral and pseudospectral methods are proposed for two-dimensional Logistic equation. The stability and convergence of the suggested schemes are proved. Numerical results demonstrate the high accuracy of these approaches.展开更多
An efficient spectral-Galerkin method for eigenvalue problems of the integral fractional Laplacian on a unit ball of any dimension is proposed in this paper.The symmetric positive definite linear system is retained ex...An efficient spectral-Galerkin method for eigenvalue problems of the integral fractional Laplacian on a unit ball of any dimension is proposed in this paper.The symmetric positive definite linear system is retained explicitly which plays an important role in the numerical analysis.And a sharp estimate on the algebraic system's condition number is established which behaves as N4s with respect to the polynomial degree N,where 2s is the fractional derivative order.The regularity estimate of solutions to source problems of the fractional Laplacian in arbitrary dimensions is firstly investigated in weighted Sobolev spaces.Then the regularity of eigenfunctions of the fractional Laplacian eigenvalue problem is readily derived.Meanwhile,rigorous error estimates of the eigenvalues and eigenvectors are ob-tained.Numerical experiments are presented to demonstrate the accuracy and efficiency and to validate the theoretical results.展开更多
Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic ...Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.展开更多
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe...In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.展开更多
As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initiall...As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initially proposed by Jiang et al.(Computational and Applied Mathematics,2021,40:174),through the utilization of a convex combination technique.And this improvement allows for an adaptive search direction by integrating a newly constructed spectral gradient-type restart strategy.Then,we develop a new spectral CGM by employing an inexact line search to determine the step size.With the application of the weak Wolfe line search,we establish the sufficient descent property of the proposed search direction.Moreover,under general assumptions,including the employment of the strong Wolfe line search for step size calculation,we demonstrate the global convergence of our new algorithm.Finally,the given unconstrained optimization test results show that the new algorithm is effective.展开更多
The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying...The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth.We provide a rigorous error analysis for the spectral methods,which shows that both the errors of approximate solutions and the errors of approximate derivatives of the solutions decay exponentially in L^(∞)-norm and weighted L^(2)-norm.The numerical examples are given to illustrate the theoretical results.展开更多
We describe the application of the spectral method to delay integro-differential equations with proportional delays. It is shown that the resulting numerical solutions exhibit the spectral convergence order. Extension...We describe the application of the spectral method to delay integro-differential equations with proportional delays. It is shown that the resulting numerical solutions exhibit the spectral convergence order. Extensions to equations with more general (nonlinear) vanishing delays are also discussed.展开更多
In this paper,an initial boundary value problem of the space-time fractional diffusion equation is studied.Both temporal and spatial directions for this equation are discreted by the Galerkin spectral methods.And then...In this paper,an initial boundary value problem of the space-time fractional diffusion equation is studied.Both temporal and spatial directions for this equation are discreted by the Galerkin spectral methods.And then based on the discretization scheme,reliable a posteriori error estimates for the spectral approximation are derived.Some numerical examples are presented to verify the validity and applicability of the derived a posteriori error estimator.展开更多
We take the two dimensional vorticity equations as models to describe spectral methods and their combinations with finite difference methods or finite element methods, which are applicable to other similar nonlinear ...We take the two dimensional vorticity equations as models to describe spectral methods and their combinations with finite difference methods or finite element methods, which are applicable to other similar nonlinear problems. Some numerical results and error estimates of these methods are given.展开更多
Diagonalized Chebyshev rational spectral methods for solving second-order elliptic problems on the half/whole line are proposed.Some Sobolev bi-orthogonal rational basis functions are constructed which lead to the dia...Diagonalized Chebyshev rational spectral methods for solving second-order elliptic problems on the half/whole line are proposed.Some Sobolev bi-orthogonal rational basis functions are constructed which lead to the diagonalization of discrete systems.Accordingly,both the exact solutions and the approximate solutions can be represented as infinite and truncated Fourier-like Chebyshev rational series.Numerical results demonstrate the effectiveness of the suggested approaches.展开更多
The aim of this paper is to develop the mixed spectral and pseudospectral methods for nonlinear problems outside a disc,using Fourier and generalized Laguerre functions.As an example,we consider a nonlinear strongly d...The aim of this paper is to develop the mixed spectral and pseudospectral methods for nonlinear problems outside a disc,using Fourier and generalized Laguerre functions.As an example,we consider a nonlinear strongly damped wave equation.The mixed spectral and pseudospectral schemes are proposed.The convergence is proved.Numerical results demonstrate the efficiency of this approach.展开更多
We develop and analyze a first-order system least-squares spectral method for the second-order elhptic boundary value problem with variable coefficients. We first analyze the Chebyshev weighted norm least-squares func...We develop and analyze a first-order system least-squares spectral method for the second-order elhptic boundary value problem with variable coefficients. We first analyze the Chebyshev weighted norm least-squares functional defined by the sum of the Lw^2- and Hw^-1- norm of the residual equations and then we eplace the negative norm by the discrete negative norm and analyze the discrete Chebyshev weighted least-squares method. The spectral convergence is derived for the proposed method. We also present various numerical experiments. The Legendre weighted least-squares method can be easily developed by following this paper.展开更多
In this paper, we review some results on the spectral methods. We first consider the Jacobi spectral method and the generalized Jacobi spectral method for various problems, including degenerated and singular different...In this paper, we review some results on the spectral methods. We first consider the Jacobi spectral method and the generalized Jacobi spectral method for various problems, including degenerated and singular differential equations. Then we present the generalized Jacobi quasi-orthogonal approximation and its applica- tions to the spectral element methods for high order problems with mixed inhomogeneous boundary conditions. We also discuss the related spectral methods for non-rectangular domains and the irrational spectral methods for unbounded domains. Next, we consider the Hermite spectral method and the generalized Hermite spec- tral method with their applications. Finally, we consider the Laguerre spectral method and the generalized Laguerre spectral method for many problems defined on unbounded domains. We also present the generalized Laguerre quasi-orthogonal approximation and its applications to certain problems of non-standard type and exterior problems.展开更多
In this paper,we introduce the dissipative spectral methods(DSM)for the first order linear hyperbolic equations in one dimension.Specifically,we consider the Fourier DSM for periodic problems and the Legendre DSM for ...In this paper,we introduce the dissipative spectral methods(DSM)for the first order linear hyperbolic equations in one dimension.Specifically,we consider the Fourier DSM for periodic problems and the Legendre DSM for equations with the Dirichlet boundary condition.The error estimates of the methods are shown to be quasioptimal for variable-coefficients equations.Numerical results are given to verify high accuracy of the DSM and to compare the proposed schemes with some high performance methods,showing some superiority in long-term integration for the periodic case and in dealing with limited smoothness near or at the boundary for the Dirichlet case.展开更多
Many physical problems such as Allen-Cahn flows have natural maximum principles which yield strong point-wise control of the physical solutions in terms of the boundary data,the initial conditions and the operator coe...Many physical problems such as Allen-Cahn flows have natural maximum principles which yield strong point-wise control of the physical solutions in terms of the boundary data,the initial conditions and the operator coefficients.Sharp/strict maximum principles insomuch of fundamental importance for the continuous problem often do not persist under numerical discretization.A lot of past research concentrates on designing fine numerical schemes which preserves the sharp maximum principles especially for nonlinear problems.However these sharp principles not only sometimes introduce unwanted stringent conditions on the numerical schemes but also completely leaves many powerful frequency-based methods unattended and rarely analyzed directly in the sharp ma-ximum norm topology.A prominent example is the spectral methods in the family of weighted residual methods.In this work we introduce and develop a new framework of almost sharp maximum principles which allow the numerical solutions to deviate from the sharp bound by a controllable discretization error:we call them effective maximum principles.We showcase the analysis for the classical Fourier spectral methods including Fourier Galerkin and Fourier collocation in space with forward Euler in time or second order Strang splitting.The model equations include the Allen-Cahn equations with double well potential,the Burgers equation and the Navier-Stokes equations.We give a comprehensive proof of the effective maximum principles under very general parametric conditions.展开更多
In this paper,efficient numerical scheme is proposed for solving the water wave model with nonlocal viscous term that describe the propagation of surface water wave.By using the Caputo fractional derivative definition...In this paper,efficient numerical scheme is proposed for solving the water wave model with nonlocal viscous term that describe the propagation of surface water wave.By using the Caputo fractional derivative definition to approximate the nonlocal fractional operator,finite difference method in time and spectral method in space are constructed for the considered model.The proposed method employs known 5/2 order scheme for fractional derivative and a mixed linearization for the nonlinear term.The analysis shows that the proposed numerical scheme is unconditionally stable and error estimates are provided to predict that the second order backward differentiation plus 5/2 order scheme converges with order 2 in time,and spectral accuracy in space.Several numerical results are provided to verify the efficiency and accuracy of our theoretical claims.Finally,the decay rate of solutions are investigated.展开更多
In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy o...In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy.展开更多
A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the c...A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.展开更多
In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its ...In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its acceleration response spectrum in any desired time duration is compatible with a time-scaled predefined acceleration response spectrum.For this purpose,simulated stationary acceleration time series is multiplied by the time dependent linear modulation function,then using a simple iterative scheme,it is forced to match a target acceleration response spectrum.It is shown that the generated samples have excellent conformity in low frequency,which is useful for nonlinear endurance time analysis.In the second part of this study,it is shown that this procedure can be extended to generate a set of spatially correlated endurance time excitation functions.This makes it possible to assess the performance of long structures under multi-support seismic excitation using endurance time analysis.展开更多
In the author’s recent publications, a parametric system biorthogonal to the corresponding segment of the exponential Fourier system was unusually effective. On its basis, it was discovered that knowledge of a finite...In the author’s recent publications, a parametric system biorthogonal to the corresponding segment of the exponential Fourier system was unusually effective. On its basis, it was discovered that knowledge of a finite number of Fourier coefficients of function f from an infinite-dimensional set of elementary functions allows f to be accurately restored (the phenomenon of over-convergence). Below, parametric biorthogonal systems are constructed for classical trigonometric Fourier series, and the corresponding phenomena of over-convergence are discovered. The decisive role here was played by representing the space L2 as an orthogonal sum of two corresponding subspaces. As a result, fast parallel algorithms for reconstructing a function from its truncated trigonometric Fourier series are proposed. The presented numerical experiments confirm the high efficiency of these convergence accelerations for smooth functions. In conclusion, the main results of the work are summarized, and some prospects for the development and generalization of the proposed approaches are discussed.展开更多
基金the Science Foundation of the Science and Technology Commission of Shanghai Municipality(No.075105118)the Shanghai Leading Academic Discipline Project(No.T0401)the Fund for E-institute of Shanghai Universities(No.E03004)
文摘The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are established, which play important roles in the related numerical methods for unbounded domains. As an example, the modified Laguerre spectral and pseudospectral methods are proposed for two-dimensional Logistic equation. The stability and convergence of the suggested schemes are proved. Numerical results demonstrate the high accuracy of these approaches.
基金supported by the National Natural Science Foundation of China(Grant No.12101325)and by the NUPTSF(Grant No.NY220162)The second author was supported by the National Natural Science Foundation of China(Grant Nos.12131005,11971016)+1 种基金The third author was supported by the National Natural Science Foundation of China(Grant No.12131005)The fifth author was supported by the National Natural Science Foundation of China(Grant Nos.12131005,U2230402).
文摘An efficient spectral-Galerkin method for eigenvalue problems of the integral fractional Laplacian on a unit ball of any dimension is proposed in this paper.The symmetric positive definite linear system is retained explicitly which plays an important role in the numerical analysis.And a sharp estimate on the algebraic system's condition number is established which behaves as N4s with respect to the polynomial degree N,where 2s is the fractional derivative order.The regularity estimate of solutions to source problems of the fractional Laplacian in arbitrary dimensions is firstly investigated in weighted Sobolev spaces.Then the regularity of eigenfunctions of the fractional Laplacian eigenvalue problem is readily derived.Meanwhile,rigorous error estimates of the eigenvalues and eigenvectors are ob-tained.Numerical experiments are presented to demonstrate the accuracy and efficiency and to validate the theoretical results.
基金National Key Research and Development Program of China under Grant No.2023YFE0102900National Natural Science Foundation of China under Grant Nos.52378506 and 52208164。
文摘Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.
文摘In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.
基金supported by the National Natural Science Foundation of China (No.72071202)the Key Laboratory of Mathematics and Engineering ApplicationsMinistry of Education。
文摘As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initially proposed by Jiang et al.(Computational and Applied Mathematics,2021,40:174),through the utilization of a convex combination technique.And this improvement allows for an adaptive search direction by integrating a newly constructed spectral gradient-type restart strategy.Then,we develop a new spectral CGM by employing an inexact line search to determine the step size.With the application of the weak Wolfe line search,we establish the sufficient descent property of the proposed search direction.Moreover,under general assumptions,including the employment of the strong Wolfe line search for step size calculation,we demonstrate the global convergence of our new algorithm.Finally,the given unconstrained optimization test results show that the new algorithm is effective.
基金This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074).
文摘The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth.We provide a rigorous error analysis for the spectral methods,which shows that both the errors of approximate solutions and the errors of approximate derivatives of the solutions decay exponentially in L^(∞)-norm and weighted L^(2)-norm.The numerical examples are given to illustrate the theoretical results.
文摘We describe the application of the spectral method to delay integro-differential equations with proportional delays. It is shown that the resulting numerical solutions exhibit the spectral convergence order. Extensions to equations with more general (nonlinear) vanishing delays are also discussed.
基金supported by the State Key Program of National Natural Science Foundation of China(No.11931003)National Natural Science Foundation of China(Nos.41974133,11671157 and 11971410)supported by the Innovation Project of Graduate School of South China Normal University(No.2018LKXM008).
文摘In this paper,an initial boundary value problem of the space-time fractional diffusion equation is studied.Both temporal and spatial directions for this equation are discreted by the Galerkin spectral methods.And then based on the discretization scheme,reliable a posteriori error estimates for the spectral approximation are derived.Some numerical examples are presented to verify the validity and applicability of the derived a posteriori error estimator.
文摘We take the two dimensional vorticity equations as models to describe spectral methods and their combinations with finite difference methods or finite element methods, which are applicable to other similar nonlinear problems. Some numerical results and error estimates of these methods are given.
基金This work was supported in part by National Natural Science Foun-dation of China(Nos.11571238 and 11601332).
文摘Diagonalized Chebyshev rational spectral methods for solving second-order elliptic problems on the half/whole line are proposed.Some Sobolev bi-orthogonal rational basis functions are constructed which lead to the diagonalization of discrete systems.Accordingly,both the exact solutions and the approximate solutions can be represented as infinite and truncated Fourier-like Chebyshev rational series.Numerical results demonstrate the effectiveness of the suggested approaches.
基金supported in part by NSF of China,N.10771142the National Basic Research Project of China,N.2005CB321701+2 种基金Shuguang Project of Shanghai Education Commission,N.08SG45Shanghai Leading Academic Discipline Project N.S30405The Fund for E-institute of Shanghai Universities N.E03004.
文摘The aim of this paper is to develop the mixed spectral and pseudospectral methods for nonlinear problems outside a disc,using Fourier and generalized Laguerre functions.As an example,we consider a nonlinear strongly damped wave equation.The mixed spectral and pseudospectral schemes are proposed.The convergence is proved.Numerical results demonstrate the efficiency of this approach.
文摘We develop and analyze a first-order system least-squares spectral method for the second-order elhptic boundary value problem with variable coefficients. We first analyze the Chebyshev weighted norm least-squares functional defined by the sum of the Lw^2- and Hw^-1- norm of the residual equations and then we eplace the negative norm by the discrete negative norm and analyze the discrete Chebyshev weighted least-squares method. The spectral convergence is derived for the proposed method. We also present various numerical experiments. The Legendre weighted least-squares method can be easily developed by following this paper.
基金supported by National Natural Science Foundation of China(Grant No.11171227)Fund for Doctoral Authority of China(Grant No.20123127110001)+1 种基金Fund for E-institute of Shanghai Universities(Grant No.E03004)Leading Academic Discipline Project of Shanghai Municipal Education Commission(Grant No.J50101)
文摘In this paper, we review some results on the spectral methods. We first consider the Jacobi spectral method and the generalized Jacobi spectral method for various problems, including degenerated and singular differential equations. Then we present the generalized Jacobi quasi-orthogonal approximation and its applica- tions to the spectral element methods for high order problems with mixed inhomogeneous boundary conditions. We also discuss the related spectral methods for non-rectangular domains and the irrational spectral methods for unbounded domains. Next, we consider the Hermite spectral method and the generalized Hermite spec- tral method with their applications. Finally, we consider the Laguerre spectral method and the generalized Laguerre spectral method for many problems defined on unbounded domains. We also present the generalized Laguerre quasi-orthogonal approximation and its applications to certain problems of non-standard type and exterior problems.
基金supported by National Natural Science Foundation of China(11171209)Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50101)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20060280010)Graduate Innovative Foundation of Shanghai University(SHUCX091048).
文摘In this paper,we introduce the dissipative spectral methods(DSM)for the first order linear hyperbolic equations in one dimension.Specifically,we consider the Fourier DSM for periodic problems and the Legendre DSM for equations with the Dirichlet boundary condition.The error estimates of the methods are shown to be quasioptimal for variable-coefficients equations.Numerical results are given to verify high accuracy of the DSM and to compare the proposed schemes with some high performance methods,showing some superiority in long-term integration for the periodic case and in dealing with limited smoothness near or at the boundary for the Dirichlet case.
文摘Many physical problems such as Allen-Cahn flows have natural maximum principles which yield strong point-wise control of the physical solutions in terms of the boundary data,the initial conditions and the operator coefficients.Sharp/strict maximum principles insomuch of fundamental importance for the continuous problem often do not persist under numerical discretization.A lot of past research concentrates on designing fine numerical schemes which preserves the sharp maximum principles especially for nonlinear problems.However these sharp principles not only sometimes introduce unwanted stringent conditions on the numerical schemes but also completely leaves many powerful frequency-based methods unattended and rarely analyzed directly in the sharp ma-ximum norm topology.A prominent example is the spectral methods in the family of weighted residual methods.In this work we introduce and develop a new framework of almost sharp maximum principles which allow the numerical solutions to deviate from the sharp bound by a controllable discretization error:we call them effective maximum principles.We showcase the analysis for the classical Fourier spectral methods including Fourier Galerkin and Fourier collocation in space with forward Euler in time or second order Strang splitting.The model equations include the Allen-Cahn equations with double well potential,the Burgers equation and the Navier-Stokes equations.We give a comprehensive proof of the effective maximum principles under very general parametric conditions.
基金The research of this author is partially supported by NSF of China(51661135011 and 91630204).
文摘In this paper,efficient numerical scheme is proposed for solving the water wave model with nonlocal viscous term that describe the propagation of surface water wave.By using the Caputo fractional derivative definition to approximate the nonlocal fractional operator,finite difference method in time and spectral method in space are constructed for the considered model.The proposed method employs known 5/2 order scheme for fractional derivative and a mixed linearization for the nonlinear term.The analysis shows that the proposed numerical scheme is unconditionally stable and error estimates are provided to predict that the second order backward differentiation plus 5/2 order scheme converges with order 2 in time,and spectral accuracy in space.Several numerical results are provided to verify the efficiency and accuracy of our theoretical claims.Finally,the decay rate of solutions are investigated.
文摘In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy.
基金the National Natural Science Foundation of China(No.11701103)the Young Top-notch Talent Program of Guangdong Province of China(No.2017GC010379)+4 种基金the Natural Science Foundation of Guangdong Province of China(No.2022A1515012147)the Project of Science and Technology of Guangzhou of China(No.202102020704)the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University of China(2021023)the Science and Technology Development Fund,Macao SAR(File No.0005/2019/A)the University of Macao of China(File Nos.MYRG2020-00035-FST,MYRG2018-00047-FST).
文摘A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.
文摘In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its acceleration response spectrum in any desired time duration is compatible with a time-scaled predefined acceleration response spectrum.For this purpose,simulated stationary acceleration time series is multiplied by the time dependent linear modulation function,then using a simple iterative scheme,it is forced to match a target acceleration response spectrum.It is shown that the generated samples have excellent conformity in low frequency,which is useful for nonlinear endurance time analysis.In the second part of this study,it is shown that this procedure can be extended to generate a set of spatially correlated endurance time excitation functions.This makes it possible to assess the performance of long structures under multi-support seismic excitation using endurance time analysis.
文摘In the author’s recent publications, a parametric system biorthogonal to the corresponding segment of the exponential Fourier system was unusually effective. On its basis, it was discovered that knowledge of a finite number of Fourier coefficients of function f from an infinite-dimensional set of elementary functions allows f to be accurately restored (the phenomenon of over-convergence). Below, parametric biorthogonal systems are constructed for classical trigonometric Fourier series, and the corresponding phenomena of over-convergence are discovered. The decisive role here was played by representing the space L2 as an orthogonal sum of two corresponding subspaces. As a result, fast parallel algorithms for reconstructing a function from its truncated trigonometric Fourier series are proposed. The presented numerical experiments confirm the high efficiency of these convergence accelerations for smooth functions. In conclusion, the main results of the work are summarized, and some prospects for the development and generalization of the proposed approaches are discussed.