Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating informa...Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating information by preserving sparse reconstruction relationship of data sets. However, SPP suffers from the fact that every new feature learned from data sets is linear combinations of all the original features, which often makes it difficult to interpret the results. To address this issue, a novel DR method called dual-sparsity preserving projection (DSPP) is proposed to further impose sparsity constraints on the projection directions of SPP. Specifically, the proposed method casts the projection function learning of SPP into a regression-type optimization problem, and then the sparse projections can be efficiently computed by the related lasso algorithm. Experimental results from face databases demonstrate the effectiveness of the proposed algorithm.展开更多
A novel face recognition method based on fusion of spatial and frequency features was presented to improve recognition accuracy. Dual-Tree Complex Wavelet Transform derives desirable facial features to cope with the v...A novel face recognition method based on fusion of spatial and frequency features was presented to improve recognition accuracy. Dual-Tree Complex Wavelet Transform derives desirable facial features to cope with the variation due to the illumination and facial expression changes. By adopting spectral regression and complex fusion technologies respectively, two improved neighborhood preserving discriminant analysis feature extraction methods were proposed to capture the face manifold structures and locality discriminatory information. Extensive experiments have been made to compare the recognition performance of the proposed method with some popular dimensionality reduction methods on ORL and Yale face databases. The results verify the effectiveness of the proposed method.展开更多
Hyperspectral remote sensing images terrain classification faces the problems of high data dimensionality and lack of labeled training data, resulting in unsatisfied terrain classification efficiency. The feature extr...Hyperspectral remote sensing images terrain classification faces the problems of high data dimensionality and lack of labeled training data, resulting in unsatisfied terrain classification efficiency. The feature extraction is required before terrain classification for preserving discriminative information and reducing data dimensionality. A hyperspectral remote sensing images feature extraction method, i.e., discrete cosine transform (DCT) spectral regression discriminant analysis (SRDA) subspace method, was presented to solve the above problems. The proposed DCT SRDA subspace method firstly takes DCT in the original spectral space and gets the DCT coefficients of each pixel spectral curve; secondly performs SRDA in the DCT coefficients space and obtains the DCT SRDA subspace. Minimum distance classifier was designed in the resulting DCT SRDA subspace to evaluate the feature extraction performance. Experiments for two real airborne visible/infrared imaging spectrometer (AVIRIS) hyperspectral images show that, comparing with spectral LDA subspace method, the proposed DCT SRDA subspace method can improve terrain classification efficiency.展开更多
基金Supported by the National Natural Science Foundation of China(11076015)the Shandong Provincial Natural Science Foundation(ZR2010FL011)the Scientific Foundation of Liaocheng University(X10010)~~
文摘Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating information by preserving sparse reconstruction relationship of data sets. However, SPP suffers from the fact that every new feature learned from data sets is linear combinations of all the original features, which often makes it difficult to interpret the results. To address this issue, a novel DR method called dual-sparsity preserving projection (DSPP) is proposed to further impose sparsity constraints on the projection directions of SPP. Specifically, the proposed method casts the projection function learning of SPP into a regression-type optimization problem, and then the sparse projections can be efficiently computed by the related lasso algorithm. Experimental results from face databases demonstrate the effectiveness of the proposed algorithm.
基金National Natural Science Foundation of China(No.61004088)Key Basic Research Foundation of Shanghai Municipal Science and Technology Commission,China(No.09JC1408000)
文摘A novel face recognition method based on fusion of spatial and frequency features was presented to improve recognition accuracy. Dual-Tree Complex Wavelet Transform derives desirable facial features to cope with the variation due to the illumination and facial expression changes. By adopting spectral regression and complex fusion technologies respectively, two improved neighborhood preserving discriminant analysis feature extraction methods were proposed to capture the face manifold structures and locality discriminatory information. Extensive experiments have been made to compare the recognition performance of the proposed method with some popular dimensionality reduction methods on ORL and Yale face databases. The results verify the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China (61003199)the Natural Science Foundation of Shaanxi Province of China (2014JQ5183, 2014JM8331)the Special Foundation for Natural Science of the Education Department of Shaanxi Province of China (2013JK1129, 2013JK1075)
文摘Hyperspectral remote sensing images terrain classification faces the problems of high data dimensionality and lack of labeled training data, resulting in unsatisfied terrain classification efficiency. The feature extraction is required before terrain classification for preserving discriminative information and reducing data dimensionality. A hyperspectral remote sensing images feature extraction method, i.e., discrete cosine transform (DCT) spectral regression discriminant analysis (SRDA) subspace method, was presented to solve the above problems. The proposed DCT SRDA subspace method firstly takes DCT in the original spectral space and gets the DCT coefficients of each pixel spectral curve; secondly performs SRDA in the DCT coefficients space and obtains the DCT SRDA subspace. Minimum distance classifier was designed in the resulting DCT SRDA subspace to evaluate the feature extraction performance. Experiments for two real airborne visible/infrared imaging spectrometer (AVIRIS) hyperspectral images show that, comparing with spectral LDA subspace method, the proposed DCT SRDA subspace method can improve terrain classification efficiency.