期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
一种大规模优化问题的邻近随机L-BFGS方法 被引量:1
1
作者 周倩 罗贤兵 《贵州大学学报(自然科学版)》 2018年第3期24-27,共4页
本文针对一类机器学习中的大规模优化问题,在凸非光滑的假设条件下,提出了一种新的邻近随机L-BFGS方法,它具有很好的扩展性和鲁棒性。文中分析了该数值方法的线性收敛性,并给出了数值算例,数值算例检验了算法的有效性和收敛性。
关键词 大规模优化问题 随机 L-bfgs方法 邻近
下载PDF
扰动谱尺度BFGS算法及其收敛性
2
作者 李国平 《宜宾学院学报》 2013年第12期34-37,共4页
在谱尺度BFGS算法基础上提出了一种扰动谱尺度BFGS算法,即在谱尺度BFGS算法的矩阵迭代公式中加入一个扰动因子,该因子能保证该算法求解非凸函数极小值问题时具有全局收敛性.在求解大规范问题时,该算法也能改善拟牛顿矩阵条件数,从而降... 在谱尺度BFGS算法基础上提出了一种扰动谱尺度BFGS算法,即在谱尺度BFGS算法的矩阵迭代公式中加入一个扰动因子,该因子能保证该算法求解非凸函数极小值问题时具有全局收敛性.在求解大规范问题时,该算法也能改善拟牛顿矩阵条件数,从而降低求解子问题的难度.通过数值试验对该算法进行检验,结果表明:在相同条件下,求解大规模问题时,该算法优于谱尺度BFGS算法. 展开更多
关键词 非凸函数极小值 谱尺度bfgs算法 全局收敛性
下载PDF
求无约束优化问题的混合谱尺度BFGS算法
3
作者 陶思俊 《新余学院学报》 2017年第6期33-36,共4页
依据BFGS算法、MBFGS算法、CBFGS算法及谱尺度BFGS算法,提出了一类混合谱尺度BFGS算法;同时,在Armijo线性搜索和Wolf-Powell线性搜索下对所提出的混合谱尺度BFGS算法证明了其全局收敛性,并通过数值实验测试了该算法的数值表现,实验结果... 依据BFGS算法、MBFGS算法、CBFGS算法及谱尺度BFGS算法,提出了一类混合谱尺度BFGS算法;同时,在Armijo线性搜索和Wolf-Powell线性搜索下对所提出的混合谱尺度BFGS算法证明了其全局收敛性,并通过数值实验测试了该算法的数值表现,实验结果表明混合谱尺度BFGS算法具有较好的数值效果。 展开更多
关键词 Mbfgs算法 Cbfgs算法 混合谱尺度bfgs算法 全局收敛
下载PDF
Nonlinear constrained optimization using the flexible tolerance method hybridized with different unconstrained methods 被引量:1
4
作者 Alice Medeiros Lima Antonio Jose Goncalves Cruz Wu Hong Kwong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第4期442-452,共11页
This paper proposes the use of the flexible tolerance method(FTM) modified with scaling of variables and hybridized with different unconstrained optimization methods to solve real constrained optimization problems.The... This paper proposes the use of the flexible tolerance method(FTM) modified with scaling of variables and hybridized with different unconstrained optimization methods to solve real constrained optimization problems.The benchmark problems used to analyze the performance of the methods were taken from G-Suite functions.The original method(FTM) and other four proposed methods:(i) FTM with scaling of variables(FTMS),(ii) FTMS hybridized with BFGS(FTMS-BFGS),(iii) FTMS hybridized with modified Powell's method(FTMS-Powell)and(iv) FTMS hybridized with PSO(FTMS-PSO), were implemented. The success rates of the methods were 80%,100%, 75%, 95% and 85%, for FTM, FTMS, FTMS-BFGS, FTMS-Powell and FTMS-PSO, respectively. Numerical experiments including real constrained problems indicated that FTMS gave the best performance, followed by FTMSPowell and FTMS-PSO. Despite the inferior performance compared to FTMS and FTMS-Powell, the FTMS-PSO method presented some advantages since good different initial points could be obtained, which allow exploring different routes through the solution space and to escape from local optima. The proposed methods proved to be an effective way of improving the performance of the original FTM. 展开更多
关键词 Flexible tolerance method Modified Powell’s method bfgs PSO scaling HYBRIDIZATION
下载PDF
The Global Convergence of Self-Scaling BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems
5
作者 Hong Xia YIN Dong Lei DU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第7期1233-1240,共8页
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessi... The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is convex (or even uniformly convex). We propose to solve unconstrained nonconvex optimization problems by a self-scaling BFGS algorithm with nonmonotone linear search. Nonmonotone line search has been recognized in numerical practices as a competitive approach for solving large-scale nonlinear problems. We consider two different nonmonotone line search forms and study the global convergence of these nonmonotone self-scale BFGS algorithms. We prove that, under some weaker condition than that in the literature, both forms of the self-scaling BFGS algorithm are globally convergent for unconstrained nonconvex optimization problems. 展开更多
关键词 nonmonotone line search self-scaling bfgs method global convergence
原文传递
模切机肘杆机构的优化设计 被引量:1
6
作者 刘尊义 张跃明 刘克格 《机械与电子》 2011年第9期75-78,共4页
针对MP1040B型模切机肘杆机构工作中的问题,利用外罚函数法和解决无约束优化问题的BFGS变尺度法,对模切机肘杆机构进行优化设计,对优化结果分析可知,一个工作行程中下模切板的最大倾斜程度比优化前降低了25.6%,模切板的最大角加速度降低... 针对MP1040B型模切机肘杆机构工作中的问题,利用外罚函数法和解决无约束优化问题的BFGS变尺度法,对模切机肘杆机构进行优化设计,对优化结果分析可知,一个工作行程中下模切板的最大倾斜程度比优化前降低了25.6%,模切板的最大角加速度降低了21%,改善了设备性能,更好地满足使用要求。 展开更多
关键词 优化设计 模切机肘杆结构 外罚函数法 bfgs变尺度法
下载PDF
A Switching Algorithm Based on Modified Quasi-Newton Equation
7
作者 Yueting Yan Chengxian Xu 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2006年第3期257-267,共11页
In this paper, a switching method for unconstrained minimization is proposed. The method is based on the modified BFGS method and the modified SR1 method. The eigenvalues and condition numbers of both the modified upd... In this paper, a switching method for unconstrained minimization is proposed. The method is based on the modified BFGS method and the modified SR1 method. The eigenvalues and condition numbers of both the modified updates are evaluated and used in the switching rule. When the condition number of the modified SR1 update is superior to the modified BFGS update, the step in the proposed quasi-Newton method is the modified SR1 step. Otherwise the step is the modified BFGS step. The efficiency of the proposed method is tested by numerical experiments on small, medium and large scale optimization. The numerical results are reported and analyzed to show the superiority of the proposed method. 展开更多
关键词 半牛顿方程 SR1方法 bfgs方法 大系统最优化 开关算法
下载PDF
A Rapid Optimization Algorithm for GPS Data Assimilation
8
作者 匡正 王斌 杨华林 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第3期437-441,共5页
Global Positioning System (GPS) meteorology data variational assimilation can be reduced to the problem of a large-scale unconstrained optimization. Because the dimension of this problem is too large, most optimal alg... Global Positioning System (GPS) meteorology data variational assimilation can be reduced to the problem of a large-scale unconstrained optimization. Because the dimension of this problem is too large, most optimal algorithms cannot be performed. In order to make GPS/MET data assimilation able to satisfy the demand of numerical weather prediction, finding an algorithm with a great convergence rate of iteration will be the most important thing. A new method is presented that dynamically combines the limited memory BFGS (L-BFGS) method with the Hessian-free Newton(HFN) method, and it has a good rate of convergence in iteration. The numerical tests indicate that the computational efficiency of the method is better than the L-BFGS and HFN methods. 展开更多
关键词 GPS data assimilation L-bfgs method HFN method large-scale optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部