A twin gridded ionization chamber with dual parameter data acquisition sys-tem is used to study neutron induced charged particle emission reaction.The angulardistribution and cross section of n-particles from the <...A twin gridded ionization chamber with dual parameter data acquisition sys-tem is used to study neutron induced charged particle emission reaction.The angulardistribution and cross section of n-particles from the <sup>64</sup>Zn(n,α)<sup>61</sup>Ni reaction are meas-ured at neutron energy 5 MeV.展开更多
Neutron spectrum should be measured before test samples are irradiated.Neutron spectrum in an irradiation chamber of a research reactor was measured by using activation method when the reactor is in normal operation u...Neutron spectrum should be measured before test samples are irradiated.Neutron spectrum in an irradiation chamber of a research reactor was measured by using activation method when the reactor is in normal operation under 2 MW.Sixteen kinds of non-fission foils(19 reaction channels) were selected,of which 10 were sensitive to thermal and intermediate energy regions,while the others were of different threshold energy and sensitive to fast energy regions.By measuring the foil radioactivity,the neutron spectrum was unfolded with the iterative methods SAND-Ⅱ and MSIT.Finally,shielding corrections of group cross-section and main factors affecting the calculation accuracy were studied and the uncertainty of solution was analyzed using the Monte Carlo method in the process of SAND-Ⅱ.展开更多
Ozone is a green house gas. Ozone absorption cross sections have been reported with discrepancies and inconsistencies. In this paper, simultaneous effects of the optical path length and temperature variations on ozone...Ozone is a green house gas. Ozone absorption cross sections have been reported with discrepancies and inconsistencies. In this paper, simultaneous effects of the optical path length and temperature variations on ozone gas absorption cross sections are investigated at different wavelengths. HITRAN 2012, the latest available line list on spectralcalc.com simulator, is used in this study to simulate ozone gas absorption cross sections in relation to the simultaneous effects of the optical path length and temperature at the wavelengths of 603 nm and 575 nm. Results obtained for gas cells with the optical path length from 10 cm to 120 cm show that the decrease in temperatures from 313 K to 103 K results in the increase in ozone gas absorption cross sections. At wavelengths of 603 nm and 575 nm, the percentage increase of ozone gas absorption cross sections is 1.22% and 0.71%, respectively. Results obtained in this study show that in the visible spectrum, at constant pressure, ozone gas absorption cross sections are dependent on the temperature and wavelength but do not depend on the optical path length. Analysis in this work addresses discrepancies in ozone gas absorption cross sections in relation to the temperature in the visible spectrum; thus, the results can be applied to get optimal configuration of high accuracy ozone gas sensors.展开更多
基金The project supported by the National Natural Science Foundation of China and China National Nuclear Corporation
文摘A twin gridded ionization chamber with dual parameter data acquisition sys-tem is used to study neutron induced charged particle emission reaction.The angulardistribution and cross section of n-particles from the <sup>64</sup>Zn(n,α)<sup>61</sup>Ni reaction are meas-ured at neutron energy 5 MeV.
基金Supported by"Strategic Priority Research Program"of the Chinese Academy of Science(No.XDA02001003)
文摘Neutron spectrum should be measured before test samples are irradiated.Neutron spectrum in an irradiation chamber of a research reactor was measured by using activation method when the reactor is in normal operation under 2 MW.Sixteen kinds of non-fission foils(19 reaction channels) were selected,of which 10 were sensitive to thermal and intermediate energy regions,while the others were of different threshold energy and sensitive to fast energy regions.By measuring the foil radioactivity,the neutron spectrum was unfolded with the iterative methods SAND-Ⅱ and MSIT.Finally,shielding corrections of group cross-section and main factors affecting the calculation accuracy were studied and the uncertainty of solution was analyzed using the Monte Carlo method in the process of SAND-Ⅱ.
基金supported by Universiti Teknologi Malaysia under Research University Grant Scheme under Grant No.05J60 and No.04H35Ministry of Higher Education under Fundamental Research Grant Scheme under Grant No.4F317 and No.4F565Nigerian Education Trust Fund under Tertiary Education Trust Fund
文摘Ozone is a green house gas. Ozone absorption cross sections have been reported with discrepancies and inconsistencies. In this paper, simultaneous effects of the optical path length and temperature variations on ozone gas absorption cross sections are investigated at different wavelengths. HITRAN 2012, the latest available line list on spectralcalc.com simulator, is used in this study to simulate ozone gas absorption cross sections in relation to the simultaneous effects of the optical path length and temperature at the wavelengths of 603 nm and 575 nm. Results obtained for gas cells with the optical path length from 10 cm to 120 cm show that the decrease in temperatures from 313 K to 103 K results in the increase in ozone gas absorption cross sections. At wavelengths of 603 nm and 575 nm, the percentage increase of ozone gas absorption cross sections is 1.22% and 0.71%, respectively. Results obtained in this study show that in the visible spectrum, at constant pressure, ozone gas absorption cross sections are dependent on the temperature and wavelength but do not depend on the optical path length. Analysis in this work addresses discrepancies in ozone gas absorption cross sections in relation to the temperature in the visible spectrum; thus, the results can be applied to get optimal configuration of high accuracy ozone gas sensors.