A two-dimensional phononic crystal (PC) structure possessing a relatively low frequency range of complete bandgap is presented. The structure is composed of periodic spindle-shaped plumbum inclusions in a rubber mat...A two-dimensional phononic crystal (PC) structure possessing a relatively low frequency range of complete bandgap is presented. The structure is composed of periodic spindle-shaped plumbum inclusions in a rubber matrix which forms a square lattice. The dispersion relation, transmission spectrum and displacement field are studied using the finite element method in conjunction with the Bloch theorem. Numerical results show that the present PC structure can achieve a large complete bandgap in a relatively low frequency range compared with two inclusions of different materials, which is useful in low-frequency noise and vibration control and can be designed as a low frequency acoustic filter and waveguides. Moreover, the transmission spectrum and effective mass are evaluated to validate the obtained band structure. It is interesting to see that within the band gap the effective mass becomes negative, resulting in an imaginary wave speed and wave exponential attenuation. Finally, sensitivity analysis of the effect of geometrical parameters of the presented PC structure on the lowest bandgap is performed to investigate the variations of the bandgap width and frequency.展开更多
We theoretically investigate the influence of the shape of nanoholes on plasmonic behaviours in coupled elliptical metallic nanotube arrays by the finite-difference time-domain (FDTD) method. We study the structure ...We theoretically investigate the influence of the shape of nanoholes on plasmonic behaviours in coupled elliptical metallic nanotube arrays by the finite-difference time-domain (FDTD) method. We study the structure in two cases: one for the array aligned along the minor axis and the other for the array aligned along the major axis. It is found that the optical properties and plasmonic effects can be tuned by the effective surface charges as a result of the variation in the minor axis length. Based on the localized nature of electric field distributions, we also clearly show that the presence of localized plasmon resonant modes originates from multipolar plasmon polaritons and a large magnitude of opposing surface charges build up in the gap between adjacent nanotubes.展开更多
Two kinds of fabricated hollow-core photonic crystal fibres (HC-PCFs) arc studied using finite element method (FEM) because the structures of the fibres are special, Normalized transmission spectra and transverse ...Two kinds of fabricated hollow-core photonic crystal fibres (HC-PCFs) arc studied using finite element method (FEM) because the structures of the fibres are special, Normalized transmission spectra and transverse intensity distribution of the modes are calculated and measured. And the dispersion characteristics of these two kinds of HC- PCFs were analysed from 400 nm to 800 nm. Simulated and measured results show that the special structure could affect the properties of HC-PCFs, By comparing the simulated values with the measured results, it can be clarified that FEM is feasible and accurate for analysing photonic crystal fibres whose structures are irregular and complex.展开更多
In this paper,an energy-harvesting cognitive radio(CR) is considered,which allows the transmitter of the secondary user(SU) to harvest the primary signal energy from the transmitter of the primary user(PU) when the pr...In this paper,an energy-harvesting cognitive radio(CR) is considered,which allows the transmitter of the secondary user(SU) to harvest the primary signal energy from the transmitter of the primary user(PU) when the presence of the PU is detected.Then the harvested energy is converted into the electrical power to supply the transmission of the SU at the detected absence of the PU.By adopting the periodic spectrum sensing,the average total transmission rate of the SU is maximized through optimizing the sensing time,subject to the constraints of the probabilities of false alarm and detection,the harvested energy and the interference rate control.The simulation results show that there deed exists an optimal sensing time that maximizes the transmission rate,and the maximum transmission rate of the energy-harvesting CR can better approach to that of the traditional CR with the increasing of the detection probability.展开更多
The open M-shell opacity of a hot bromine plasma has been calculated by using a detailed level accounting (DLA) model. One-electron orbitals obtained by solving the fully relativistic Dirac-Fock equations are used t...The open M-shell opacity of a hot bromine plasma has been calculated by using a detailed level accounting (DLA) model. One-electron orbitals obtained by solving the fully relativistic Dirac-Fock equations are used to obtain the atomic levels and the radiative transition oscillator strengths. Only the level mixing within the same electron configuration is considered to reduce the complexity of the calculations. Detailed comparisons have been made between the results of the DLA and average atom (AA) models. Good agreements are found for both the M-shell transition arrays and the Planck mean opacity but there are differences for the line positions in the 2p → 3d absorption region due to the statistical treatment for the one-electron orbitals in the AA model.展开更多
The experimental absorption spectra of a hot NaBr plasma are theoretically studied by using a detailed level accounting model. The sodium and bromine absorption spectra have been well reproduced respectively in the ap...The experimental absorption spectra of a hot NaBr plasma are theoretically studied by using a detailed level accounting model. The sodium and bromine absorption spectra have been well reproduced respectively in the approach of local thermodynamic equilibrium, in which the populations between and within ions are obtained by solving the Saha-Boltzmann equation. The temperature of bromine however is found to be much lower than the one of sodium. Such discrepancy indicates that thermodynamic equilibrium is not reached between the sodium and bromine atoms during the measurement.展开更多
Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circ...Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circular nanotube arrays, two photonic band gaps are emerged in the transmission spectra offing-shaped nanotube arrays, the two band gaps and transmission spectra are adjusted by the length, inner radius, intertube spacing and the dielectric constants of the core and embedding medium, and magnitude modification, redshift and blueshift of the resonance modes are observed. A metallic ring-shaped nanotube arrays for subwavelength band-stop filter in the range of visible light can be achieved. To understand its physical origin, field-interference mechanism was suggested by the field distributions. The proposed nanostructures and results may have great potential applications in subwavelength near-field optics.展开更多
To obtain the influence rules of the coating parameters of a long-period fiber grating(LPFG)with respect to temperature,strain and refractive index sensing properties,based on the mode coupling theory,a strict four-la...To obtain the influence rules of the coating parameters of a long-period fiber grating(LPFG)with respect to temperature,strain and refractive index sensing properties,based on the mode coupling theory,a strict four-layer theorietical model of a metal film coated LPFG is established,and these parameters that affect the spectral characteristics of the metal film coated LPFG are studied.The simulation results show that there is an optimal metal film thickness on the surface of the LPFG that will induce the surface-plasmon resonance(SP R)effect,which results in higher sensitivity to the environmental temperature and refractive index but has little influence on the strain There is theoretical evidence that when the silver thickness is between0.8and1.2nm,the refractive index sensitivity will reach the peak point of42.4026,at which the refractive index sensor sensitivity is increased by4.S%.The theoretical results of coating a long-period fiber grating provide a good theoretical basis and guidance for LPFG design and parameters optimization展开更多
The transmission delay of realtime video packet mainly depends on the sensing time delay(short-term factor) and the entire frame transmission delay(long-term factor).Therefore,the optimization problem in the spectrum ...The transmission delay of realtime video packet mainly depends on the sensing time delay(short-term factor) and the entire frame transmission delay(long-term factor).Therefore,the optimization problem in the spectrum handoff process should be formulated as the combination of microscopic optimization and macroscopic optimization.In this paper,we focus on the issue of combining these two optimization models,and propose a novel Evolution Spectrum Handoff(ESH)strategy to minimize the expected transmission delay of real-time video packet.In the microoptimized model,considering the tradeoff between Primary User's(PU's) allowable collision percentage of each channel and transmission delay of video packet,we propose a mixed integer non-linear programming scheme.The scheme is able to achieve the minimum sensing time which is termed as an optimal stopping time.In the macro-optimized model,using the optimal stopping time as reward function within the partially observable Markov decision process framework,the EHS strategy is designed to search an optimal target channel set and minimize the expected delay of packet in the long-term real-time video transmission.Meanwhile,the minimum expected transmission delay is obtained under practical cognitive radio networks' conditions,i.e.,secondary user's mobility,PU's random access,imperfect sensing information,etc..Theoretical analysis and simulation results show that the ESH strategy can effectively reduce the transmission delay of video packet in spectrum handoff process.展开更多
In coal-fired power generation industry, parameters such as particle size affect combustion efficiency. Especially in the application of two-phase flow clean energy, the parameters such as particle velocity, particle ...In coal-fired power generation industry, parameters such as particle size affect combustion efficiency. Especially in the application of two-phase flow clean energy, the parameters such as particle velocity, particle size distribution and concentration are very important, because the coal particle velocity, concentration or size range have an impact on the whole combustion process. This paper introduces an optical measurement setup based on the transmission fluctuation correlation spectrum measurement technique, which realizes the simultaneous measurement of particle velocity, particle size distribution and concentration. Compared with image method, ultrasonic spectrum method and other methods, the experimental device is simple and low-cost.展开更多
In the past decade, numerous genes associated with autism spectrum disorders(ASDs) have been identified. These genes encode key regulators of synaptogenesis,synaptic function, and synaptic plasticity. Drosophila is ...In the past decade, numerous genes associated with autism spectrum disorders(ASDs) have been identified. These genes encode key regulators of synaptogenesis,synaptic function, and synaptic plasticity. Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis, synaptic function, synaptic plasticity, and neural circuit assembly and consolidation. Here, we review Drosophila studies on ASD genes that regulate synaptogenesis, synaptic function, and synaptic plasticity through modulating chromatin remodeling, transcription, protein synthesis and degradation, cytoskeleton dynamics, and synaptic scaffolding.展开更多
The effects of manufacturing errors on transmission characteristics are analyzed for a polymer vertical coupling microring resonator.Calculated results show that the errors cause a shift and shape change of the transm...The effects of manufacturing errors on transmission characteristics are analyzed for a polymer vertical coupling microring resonator.Calculated results show that the errors cause a shift and shape change of the transmission spectrum compared to the designed case without errors.Furthermore,accumulation and compensation for the errors is researched.In order to realize the normal filtering for the fabricated microring resonator device,some allowed errors are discussed.展开更多
We have theoretically investigated the effect of the dielectric core and the dielectric embedding medium separately on the transmission spectra and plasmonic properties of coupled metallic nanotube arrays.It is found ...We have theoretically investigated the effect of the dielectric core and the dielectric embedding medium separately on the transmission spectra and plasmonic properties of coupled metallic nanotube arrays.It is found that the plasmonic properties of the nanotube arrays are strongly influenced by the presence of the dielectric which induces additional screening charges.We show that instead of one single photonic bandgap for the hollow nanotube arrays placed in air,an additional photonic bandgap arises from the presence of dielectric media in the transmission spectra.Based on the localized nature of the electric field distributions,we also clearly show the presence of the local plasmonic resonant modes that originate from multipolar plasmon polaritons in the cross section of these nanotube arrays,and that a large amount of opposing surface charges are built up in the gap between adjacent nanotubes.展开更多
Based on transmission theory, a 17 x 17 polymer arrayed waveguide grating (AWG) multiplexer para meter optimization is performed, and the influence of the fabrication results on the transmission characteristics are ...Based on transmission theory, a 17 x 17 polymer arrayed waveguide grating (AWG) multiplexer para meter optimization is performed, and the influence of the fabrication results on the transmission characteristics are analyzed. In this paper, we mainly discuss three of the main errors in the fabrication of polymer AWG devices. One is 3n 1, which is caused by the tuning of the core refractive index n 1, the second is 8b, which results from the rotating-coating of the core thickness b, and the other is the non-ideal core cross-section, which is caused by steam redissolution. The effects of the above fabrication errors on the transmission characteristics of the AWG device are investigated, and compensation techniques are proposed. By comparing the theoretical simulation and experimental results, the shift in the transmission spectrum is reduced by 0.028 nm, the 3 dB bandwidth is increased by about 0.036 nm, the insertion loss is reduced by about 3 dB for the central channel and 4.5 dB for the edge channels, and the crosstalk is reduced by 1.5 dB.展开更多
Using the non-equilibrium Green functions (NEGF) and density functional theory (DFT) method, a calculation of the transport properties of the Au-di-thiol-benzene (DTB) sandwich system was performed. The results ...Using the non-equilibrium Green functions (NEGF) and density functional theory (DFT) method, a calculation of the transport properties of the Au-di-thiol-benzene (DTB) sandwich system was performed. The results show that both the remaining H atom at the end of the DTB molecule and the increased S-Au surface distance will decrease the electronic transport significantly. The applied bias would change the symmetry of the system electronic structure. Our result was qualitatively consistent with the experiment, but there existed a gap of three orders of magnitude, and this was attributed to the different coupling geometry between the theoretical work and the experiment.展开更多
In this work,we have successfully grown high quality epitaxialβ-Ga_(2)O_(3)thin films onβ-Ga_(2)O_(3)(100)and Al_(2)O_(3)(0001)substrates using pulsed laser deposition(PLD).By optimizing temperature and oxygen press...In this work,we have successfully grown high quality epitaxialβ-Ga_(2)O_(3)thin films onβ-Ga_(2)O_(3)(100)and Al_(2)O_(3)(0001)substrates using pulsed laser deposition(PLD).By optimizing temperature and oxygen pressure,the best conditions were found to be 650-700℃and 0.5 Pa.To further improve the quality of hetero-epitaxialβ-Ga_(2)O_(3),the sapphire substrates were pretreated for atomic terraced surface by chemical cleaning and high temperature annealing.From the optical transmittance measurements,the films grown at 600-750℃exhibit a clear absorption edge at deep ultraviolet region around 250-275 nm wavelength.High resolution transmission electron microscope(HRTEM)images and X-ray diffraction(XRD)patterns demonstrate thatβ-Ga_(2)O_(3)(-201)//Al_(2)O_(3)(0001)epitaxial texture dominated the epitaxial oxide films on sapphire substrate,which opens up the possibilities of high power electric devices.展开更多
The author studied and demonstrated the various modeling aspects of long period fiber grating (LPFG) such as the core effective index, cladding effective index, coupling coefficient, coupled mode theory, and transmi...The author studied and demonstrated the various modeling aspects of long period fiber grating (LPFG) such as the core effective index, cladding effective index, coupling coefficient, coupled mode theory, and transmission spectrum of the LPFG using three-layer fiber geometry. Actually, there are two different techniques used for theoretical modeling of the long period fiber grating. The first technique was used by Vengsarkar et al who described the phenomenon of long-period fiber gratings, and the second technique was reported by Erdogan who revealed the inaccuracies and shortcomings of the original method, thereby providing an accurate and updated alternative. The main difference between these two different approaches lies in their fiber geometry. Venserkar et al used two-layer fiber geometry which is simple but employs weakly guided approximation, whereas Erdogan used three-layer fiber geometry which is complex but also the most accurate technique for theoretical study of the LPFG. The author further discussed about the behavior of the transmission spectrum by altering different grating parameters such as the grating length, ultraviolet (UV) induced-index change, and grating period to achieve the desired flexibility. The author simulated the various results with the help of MATLAB.展开更多
The transmission spectra of a TiO2-silicone oil suspension in an increasing external electric field are studied. As the electric field increases, the structure of the suspension changes from a disordered one to an ord...The transmission spectra of a TiO2-silicone oil suspension in an increasing external electric field are studied. As the electric field increases, the structure of the suspension changes from a disordered one to an ordered one. Interestingly, the transmission spectra blueshift in this structure-ordering process. Furthermore, the relative transmission spectra exhibit Fano-like asymmetric line shapes. The deviation ratio of each asymmetric line shape increases monotonously as the disorder of the suspension decreases. We suggest that this blueshift phenomenon can be used to characterize the disorder strength of three- dimensional systems.展开更多
By using the coupled mode theory and the transfer matrix technique,the optical transfer function is presented for analyzing the size of the waveguide,radius of the microring,free spectral range and amplitude coupling ...By using the coupled mode theory and the transfer matrix technique,the optical transfer function is presented for analyzing the size of the waveguide,radius of the microring,free spectral range and amplitude coupling ratio of the vertical coupling microring resonator.Under the central wavelength of 1550 nm,optimization and simulation are performed when the central deviation between the ring and the channel is 0,0.5,1μm,respectively, the 3-dB bandwidth of the spectral response is about 0.21,0.09,0.03 nm,and the intensity of the nonresonant light is below-30,-40,-50 dB,respectively.展开更多
Gas sensors play an indispensable role in industrial,personal safety and environmental protection,and have been widely investigated by researchers.In some cases,the sensitivity of a two-dimensional material sensor can...Gas sensors play an indispensable role in industrial,personal safety and environmental protection,and have been widely investigated by researchers.In some cases,the sensitivity of a two-dimensional material sensor can be enhanced by generating vacancies or applying an external electric field.Similar results can be achieved using Janus 2D materials,which have an inherent electric field and are good candidates for high-sensitivity gas sensors.In this study,the electronic and transport properties of Janus group-Ⅲchalcogenide monolayers(Ga2SSe,In2SSe)were investigated for detecting CO2 and NO2 using first-principles calculations.For several parameters that affect the performance of gas sensors,such as adsorption distances,adsorption energies,charge transfers and density of states(DOS),a detailed comparison of Janus group-Ⅲchalcogenide monolayers has been provided with their pristine systems,Janus group-Ⅲchalcogenide monolayers(Ga2SSe,In2SSe)have high selectivity.It was mainly ascribed to the built-in electric field caused by the out-of-plane asymmetric structure of Janus monolayer which enhances the dipole-dipole interaction between the polar gas molecule and the 2D materials.And the variation of transmission spectra of the Janus group-Ⅲchalcogenide monolayer before and after adsorbing molecules further proves the feasibility of this kind of material as a high-sensitivity gas sensor.展开更多
文摘A two-dimensional phononic crystal (PC) structure possessing a relatively low frequency range of complete bandgap is presented. The structure is composed of periodic spindle-shaped plumbum inclusions in a rubber matrix which forms a square lattice. The dispersion relation, transmission spectrum and displacement field are studied using the finite element method in conjunction with the Bloch theorem. Numerical results show that the present PC structure can achieve a large complete bandgap in a relatively low frequency range compared with two inclusions of different materials, which is useful in low-frequency noise and vibration control and can be designed as a low frequency acoustic filter and waveguides. Moreover, the transmission spectrum and effective mass are evaluated to validate the obtained band structure. It is interesting to see that within the band gap the effective mass becomes negative, resulting in an imaginary wave speed and wave exponential attenuation. Finally, sensitivity analysis of the effect of geometrical parameters of the presented PC structure on the lowest bandgap is performed to investigate the variations of the bandgap width and frequency.
基金Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100162110068)the Graduate Education Innovation Project of Central South University (Grant No. 2010ssxt010)the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX2009B029)
文摘We theoretically investigate the influence of the shape of nanoholes on plasmonic behaviours in coupled elliptical metallic nanotube arrays by the finite-difference time-domain (FDTD) method. We study the structure in two cases: one for the array aligned along the minor axis and the other for the array aligned along the major axis. It is found that the optical properties and plasmonic effects can be tuned by the effective surface charges as a result of the variation in the minor axis length. Based on the localized nature of electric field distributions, we also clearly show that the presence of localized plasmon resonant modes originates from multipolar plasmon polaritons and a large magnitude of opposing surface charges build up in the gap between adjacent nanotubes.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2003CB314905)the National High Technology Development Program of China (Grant No 2003AA311010)
文摘Two kinds of fabricated hollow-core photonic crystal fibres (HC-PCFs) arc studied using finite element method (FEM) because the structures of the fibres are special, Normalized transmission spectra and transverse intensity distribution of the modes are calculated and measured. And the dispersion characteristics of these two kinds of HC- PCFs were analysed from 400 nm to 800 nm. Simulated and measured results show that the special structure could affect the properties of HC-PCFs, By comparing the simulated values with the measured results, it can be clarified that FEM is feasible and accurate for analysing photonic crystal fibres whose structures are irregular and complex.
基金supported by the National Natural Science Foundation of China under Grant Nos.61201143,61402416,611301132and 61471194the Natural Science Foundation of Jiangsu Province under Grant No.BK20140828+2 种基金the Natural Science Foundation of Zhejiang Province under Grant No.LQ14F010003the Chinese Postdoctoral Science Foundation under Grant No.2015M580425the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry
文摘In this paper,an energy-harvesting cognitive radio(CR) is considered,which allows the transmitter of the secondary user(SU) to harvest the primary signal energy from the transmitter of the primary user(PU) when the presence of the PU is detected.Then the harvested energy is converted into the electrical power to supply the transmission of the SU at the detected absence of the PU.By adopting the periodic spectrum sensing,the average total transmission rate of the SU is maximized through optimizing the sensing time,subject to the constraints of the probabilities of false alarm and detection,the harvested energy and the interference rate control.The simulation results show that there deed exists an optimal sensing time that maximizes the transmission rate,and the maximum transmission rate of the energy-harvesting CR can better approach to that of the traditional CR with the increasing of the detection probability.
基金Supported by the National Science Fund for Distinguished Young Scholars under Grant No 10025416, the National Natural Science Foundation of China under Grant No 10474138, the National High-Tech ICF Committee in China, and the China Research Association of Atomic and Molecular Data.
文摘The open M-shell opacity of a hot bromine plasma has been calculated by using a detailed level accounting (DLA) model. One-electron orbitals obtained by solving the fully relativistic Dirac-Fock equations are used to obtain the atomic levels and the radiative transition oscillator strengths. Only the level mixing within the same electron configuration is considered to reduce the complexity of the calculations. Detailed comparisons have been made between the results of the DLA and average atom (AA) models. Good agreements are found for both the M-shell transition arrays and the Planck mean opacity but there are differences for the line positions in the 2p → 3d absorption region due to the statistical treatment for the one-electron orbitals in the AA model.
基金Supported by the National Science Fund for Distinguished Young Scholars under Grant No 10025416, the National Natural Science Foundation of China under Grant No 10474138, the National High-Tech ICF Committee in China, and the China Research Association of Atomic and Molecular Data.
文摘The experimental absorption spectra of a hot NaBr plasma are theoretically studied by using a detailed level accounting model. The sodium and bromine absorption spectra have been well reproduced respectively in the approach of local thermodynamic equilibrium, in which the populations between and within ions are obtained by solving the Saha-Boltzmann equation. The temperature of bromine however is found to be much lower than the one of sodium. Such discrepancy indicates that thermodynamic equilibrium is not reached between the sodium and bromine atoms during the measurement.
基金Projects(11164007,61275174)supported by the National Natural Science Foundation of ChinaProject(20100162110068)supported by the Doctoral Program of Higher Education of China+1 种基金Project(20132BAB212007)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ11107)supported by Scientific Foundation of Jiangxi Education Department,China
文摘Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circular nanotube arrays, two photonic band gaps are emerged in the transmission spectra offing-shaped nanotube arrays, the two band gaps and transmission spectra are adjusted by the length, inner radius, intertube spacing and the dielectric constants of the core and embedding medium, and magnitude modification, redshift and blueshift of the resonance modes are observed. A metallic ring-shaped nanotube arrays for subwavelength band-stop filter in the range of visible light can be achieved. To understand its physical origin, field-interference mechanism was suggested by the field distributions. The proposed nanostructures and results may have great potential applications in subwavelength near-field optics.
基金National Natural Science Foundation of China(No.51309001)Scientific Research Key Project of Anhui Province(No.KJ2017A041)
文摘To obtain the influence rules of the coating parameters of a long-period fiber grating(LPFG)with respect to temperature,strain and refractive index sensing properties,based on the mode coupling theory,a strict four-layer theorietical model of a metal film coated LPFG is established,and these parameters that affect the spectral characteristics of the metal film coated LPFG are studied.The simulation results show that there is an optimal metal film thickness on the surface of the LPFG that will induce the surface-plasmon resonance(SP R)effect,which results in higher sensitivity to the environmental temperature and refractive index but has little influence on the strain There is theoretical evidence that when the silver thickness is between0.8and1.2nm,the refractive index sensitivity will reach the peak point of42.4026,at which the refractive index sensor sensitivity is increased by4.S%.The theoretical results of coating a long-period fiber grating provide a good theoretical basis and guidance for LPFG design and parameters optimization
基金supported by the National Natural Science Foundation of China under Grant No.61301101
文摘The transmission delay of realtime video packet mainly depends on the sensing time delay(short-term factor) and the entire frame transmission delay(long-term factor).Therefore,the optimization problem in the spectrum handoff process should be formulated as the combination of microscopic optimization and macroscopic optimization.In this paper,we focus on the issue of combining these two optimization models,and propose a novel Evolution Spectrum Handoff(ESH)strategy to minimize the expected transmission delay of real-time video packet.In the microoptimized model,considering the tradeoff between Primary User's(PU's) allowable collision percentage of each channel and transmission delay of video packet,we propose a mixed integer non-linear programming scheme.The scheme is able to achieve the minimum sensing time which is termed as an optimal stopping time.In the macro-optimized model,using the optimal stopping time as reward function within the partially observable Markov decision process framework,the EHS strategy is designed to search an optimal target channel set and minimize the expected delay of packet in the long-term real-time video transmission.Meanwhile,the minimum expected transmission delay is obtained under practical cognitive radio networks' conditions,i.e.,secondary user's mobility,PU's random access,imperfect sensing information,etc..Theoretical analysis and simulation results show that the ESH strategy can effectively reduce the transmission delay of video packet in spectrum handoff process.
文摘In coal-fired power generation industry, parameters such as particle size affect combustion efficiency. Especially in the application of two-phase flow clean energy, the parameters such as particle velocity, particle size distribution and concentration are very important, because the coal particle velocity, concentration or size range have an impact on the whole combustion process. This paper introduces an optical measurement setup based on the transmission fluctuation correlation spectrum measurement technique, which realizes the simultaneous measurement of particle velocity, particle size distribution and concentration. Compared with image method, ultrasonic spectrum method and other methods, the experimental device is simple and low-cost.
基金supported by the National Natural Science Foundation of China(31471031,31400927,and 31671045)the Natural Science Foundation of Jiangsu Province,China(BK20140623)
文摘In the past decade, numerous genes associated with autism spectrum disorders(ASDs) have been identified. These genes encode key regulators of synaptogenesis,synaptic function, and synaptic plasticity. Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis, synaptic function, synaptic plasticity, and neural circuit assembly and consolidation. Here, we review Drosophila studies on ASD genes that regulate synaptogenesis, synaptic function, and synaptic plasticity through modulating chromatin remodeling, transcription, protein synthesis and degradation, cytoskeleton dynamics, and synaptic scaffolding.
基金supported by the Science and Technology Development of Jilin Province.China(Nos.20110320.201201078)
文摘The effects of manufacturing errors on transmission characteristics are analyzed for a polymer vertical coupling microring resonator.Calculated results show that the errors cause a shift and shape change of the transmission spectrum compared to the designed case without errors.Furthermore,accumulation and compensation for the errors is researched.In order to realize the normal filtering for the fabricated microring resonator device,some allowed errors are discussed.
基金the Excellent Doctorate Dissertation Foundation of Central South University (Grant No.2008yb039)the Postgraduate Innovative Project of Hunan Province (Grant No.CX2009B029)
文摘We have theoretically investigated the effect of the dielectric core and the dielectric embedding medium separately on the transmission spectra and plasmonic properties of coupled metallic nanotube arrays.It is found that the plasmonic properties of the nanotube arrays are strongly influenced by the presence of the dielectric which induces additional screening charges.We show that instead of one single photonic bandgap for the hollow nanotube arrays placed in air,an additional photonic bandgap arises from the presence of dielectric media in the transmission spectra.Based on the localized nature of the electric field distributions,we also clearly show the presence of the local plasmonic resonant modes that originate from multipolar plasmon polaritons in the cross section of these nanotube arrays,and that a large amount of opposing surface charges are built up in the gap between adjacent nanotubes.
基金supported by the National Natural Science Foundation of China(No.11254001)the Science and Technology Development of Jilin Province of China(Nos.20110320,201201078)
文摘Based on transmission theory, a 17 x 17 polymer arrayed waveguide grating (AWG) multiplexer para meter optimization is performed, and the influence of the fabrication results on the transmission characteristics are analyzed. In this paper, we mainly discuss three of the main errors in the fabrication of polymer AWG devices. One is 3n 1, which is caused by the tuning of the core refractive index n 1, the second is 8b, which results from the rotating-coating of the core thickness b, and the other is the non-ideal core cross-section, which is caused by steam redissolution. The effects of the above fabrication errors on the transmission characteristics of the AWG device are investigated, and compensation techniques are proposed. By comparing the theoretical simulation and experimental results, the shift in the transmission spectrum is reduced by 0.028 nm, the 3 dB bandwidth is increased by about 0.036 nm, the insertion loss is reduced by about 3 dB for the central channel and 4.5 dB for the edge channels, and the crosstalk is reduced by 1.5 dB.
基金Project supported by the National Natural Science Foundation of China (No. 20173031). The authors would like to thank Professor Yuan- sheng JIANG for his support and some helpful com- ments. Thank Atomistix for their trial version of TRANSIESTAC.
文摘Using the non-equilibrium Green functions (NEGF) and density functional theory (DFT) method, a calculation of the transport properties of the Au-di-thiol-benzene (DTB) sandwich system was performed. The results show that both the remaining H atom at the end of the DTB molecule and the increased S-Au surface distance will decrease the electronic transport significantly. The applied bias would change the symmetry of the system electronic structure. Our result was qualitatively consistent with the experiment, but there existed a gap of three orders of magnitude, and this was attributed to the different coupling geometry between the theoretical work and the experiment.
基金the National Natural Science Foundation of China(61674165,61604167,61574160,61704183,61404159,11604366)the Natural Science Foundation of Jiangsu Province(BK20170432,BK20160397,BK20140394)+2 种基金the National Key R&D Program of China(2016YFB0401803)the Strategic Priority Research Program of the Chinese Academy of Science(XDA09020401)XRD,AFM and TEM experiments were performed at the Platform for Characterization&Test,Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),Chinese Academy of Sciences.
文摘In this work,we have successfully grown high quality epitaxialβ-Ga_(2)O_(3)thin films onβ-Ga_(2)O_(3)(100)and Al_(2)O_(3)(0001)substrates using pulsed laser deposition(PLD).By optimizing temperature and oxygen pressure,the best conditions were found to be 650-700℃and 0.5 Pa.To further improve the quality of hetero-epitaxialβ-Ga_(2)O_(3),the sapphire substrates were pretreated for atomic terraced surface by chemical cleaning and high temperature annealing.From the optical transmittance measurements,the films grown at 600-750℃exhibit a clear absorption edge at deep ultraviolet region around 250-275 nm wavelength.High resolution transmission electron microscope(HRTEM)images and X-ray diffraction(XRD)patterns demonstrate thatβ-Ga_(2)O_(3)(-201)//Al_(2)O_(3)(0001)epitaxial texture dominated the epitaxial oxide films on sapphire substrate,which opens up the possibilities of high power electric devices.
文摘The author studied and demonstrated the various modeling aspects of long period fiber grating (LPFG) such as the core effective index, cladding effective index, coupling coefficient, coupled mode theory, and transmission spectrum of the LPFG using three-layer fiber geometry. Actually, there are two different techniques used for theoretical modeling of the long period fiber grating. The first technique was used by Vengsarkar et al who described the phenomenon of long-period fiber gratings, and the second technique was reported by Erdogan who revealed the inaccuracies and shortcomings of the original method, thereby providing an accurate and updated alternative. The main difference between these two different approaches lies in their fiber geometry. Venserkar et al used two-layer fiber geometry which is simple but employs weakly guided approximation, whereas Erdogan used three-layer fiber geometry which is complex but also the most accurate technique for theoretical study of the LPFG. The author further discussed about the behavior of the transmission spectrum by altering different grating parameters such as the grating length, ultraviolet (UV) induced-index change, and grating period to achieve the desired flexibility. The author simulated the various results with the help of MATLAB.
文摘The transmission spectra of a TiO2-silicone oil suspension in an increasing external electric field are studied. As the electric field increases, the structure of the suspension changes from a disordered one to an ordered one. Interestingly, the transmission spectra blueshift in this structure-ordering process. Furthermore, the relative transmission spectra exhibit Fano-like asymmetric line shapes. The deviation ratio of each asymmetric line shape increases monotonously as the disorder of the suspension decreases. We suggest that this blueshift phenomenon can be used to characterize the disorder strength of three- dimensional systems.
基金Project supported by the Science and Technology Development of Jilin Province(Nos.20110320,201201078)
文摘By using the coupled mode theory and the transfer matrix technique,the optical transfer function is presented for analyzing the size of the waveguide,radius of the microring,free spectral range and amplitude coupling ratio of the vertical coupling microring resonator.Under the central wavelength of 1550 nm,optimization and simulation are performed when the central deviation between the ring and the channel is 0,0.5,1μm,respectively, the 3-dB bandwidth of the spectral response is about 0.21,0.09,0.03 nm,and the intensity of the nonresonant light is below-30,-40,-50 dB,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.11974091)。
文摘Gas sensors play an indispensable role in industrial,personal safety and environmental protection,and have been widely investigated by researchers.In some cases,the sensitivity of a two-dimensional material sensor can be enhanced by generating vacancies or applying an external electric field.Similar results can be achieved using Janus 2D materials,which have an inherent electric field and are good candidates for high-sensitivity gas sensors.In this study,the electronic and transport properties of Janus group-Ⅲchalcogenide monolayers(Ga2SSe,In2SSe)were investigated for detecting CO2 and NO2 using first-principles calculations.For several parameters that affect the performance of gas sensors,such as adsorption distances,adsorption energies,charge transfers and density of states(DOS),a detailed comparison of Janus group-Ⅲchalcogenide monolayers has been provided with their pristine systems,Janus group-Ⅲchalcogenide monolayers(Ga2SSe,In2SSe)have high selectivity.It was mainly ascribed to the built-in electric field caused by the out-of-plane asymmetric structure of Janus monolayer which enhances the dipole-dipole interaction between the polar gas molecule and the 2D materials.And the variation of transmission spectra of the Janus group-Ⅲchalcogenide monolayer before and after adsorbing molecules further proves the feasibility of this kind of material as a high-sensitivity gas sensor.