Chlorite,as the most representative gangue mineral associated with specularite,of which the separation of these two minerals is difficult.This paper investigated the depression effect of taurine on specularite/chlorit...Chlorite,as the most representative gangue mineral associated with specularite,of which the separation of these two minerals is difficult.This paper investigated the depression effect of taurine on specularite/chlorite separation via flotation experiments,adsorption tests,contact angle measurements,Zeta potential detection,FT-IR measurements,and XPS analyses.The results of single mineral flotation indicated that chlorite could be depressed selectively by taurine with the recovery of less than 30%,but the floatability of specularite remains high with recovery rate of 81.77%at pH 10.The artificial mixed mineral flotation results confirmed the effectiveness of taurine as a depressant.Surface adsorption,contact angle,and Zeta potential detection revealed taurine primarily adsorbs on the chlorite surface,which hampered the DDA’s subsequent adsorption and results in the chlorite’s poor floatability.The FT-IR spectra and XPS analyses provided further proof that taurine adsorbed on chlorite surface as an electron donor,and part of the electrons transferred from the sulfonic acid group of taurine to metal ions during the adsorption process.In addition,the hydrogen bond between amino-group of taurine and O ions in chlorite surface was also formed in the adsorption process.Finally,optimized adsorption configurations of taurine on chlorite surfaces were proposed.展开更多
This study used specularite, a high-gradient magnetic separation concentrate, as a raw material in reverse flotation.An iron concentrate with a grade of 65.1 wt% and a recovery rate of 75.31% were obtained.A centrifug...This study used specularite, a high-gradient magnetic separation concentrate, as a raw material in reverse flotation.An iron concentrate with a grade of 65.1 wt% and a recovery rate of 75.31% were obtained.A centrifugal concentrator served as the deep purification equipment for the preparation of iron oxide red pigments, and its optimal rotating drum speed, feed concentration, and other conditions were determined.Under optimal conditions, a high-purity iron oxide concentrate with a grade of 69.38 wt% and a recovery rate of 80.89% were obtained and used as a raw material for preparing iron oxide red pigment.Calcining with sulfuric acid produced iron red pigments with different hues.Simultaneously, middlings with a grade of 60.20 wt% and a recovery rate of 17.51% were obtained and could be used in blast furnace ironmaking.High-value utilization of specularite beneficiation products was thus achieved.展开更多
A modified humic acid(MHA) binder was tested as a substitute for bentonite to prepare qualified specularite pellets. The results show that there is stronger chemisorption between organic functional groups in MHA binde...A modified humic acid(MHA) binder was tested as a substitute for bentonite to prepare qualified specularite pellets. The results show that there is stronger chemisorption between organic functional groups in MHA binder molecular and specularite particles, improving the green pellet strength. MHA binder has obvious effect on the strength and microstructure of preheated pellets due to the thermal decomposition of organic matters in MHA binder. Appropriately increasing preheating temperature or time can eliminate the adverse impact of organic matters on the preheated pellet strength. Compared with the bentonite pellets, the roasted pellets with MHA binder have a more compact microstructure, and the recrystallization of the Fe2O3 crystal grains is better.Consequently, under optimal conditions, 0.75%(mass fraction) MHA binder pellets have equal or better pellet strengths and contain1.06% more total iron than 2 % bentonite pellets. The testing results indicate that MHA binder is a promising and effective alternative to bentonite for the specularite pellets.展开更多
Specularite concentrates have advantages of high ferrous grade, less harmful impurities and low price. However, the small size and poor granulation behavior of specularite concentrates consequently deteriorate the per...Specularite concentrates have advantages of high ferrous grade, less harmful impurities and low price. However, the small size and poor granulation behavior of specularite concentrates consequently deteriorate the permeability of sinter bed and reduce the productivity of sinter, resulting in un-effective utilization in sintering process. The granulation experiments were carried out when specularite concentrates matched with five kinds of fine or coarse ores, and the effects of surface property and wettability of fine or coarse ores on granulation behavior of specularite concentrates were investigated. Then, the optimized ore blending recipes were proposed to strengthen the granulation behavior of specularite concentrates. The results indicated that the growth index increased with increasing the specific surface area of fine ores and had a positive linear correlation with the circularity degree of coarse ores, whereas negative correlations exist between the growth index and the contact angle of fine or coarse ores. Compared with the concentrates, the growth index increased by approximately 22% scheme of blended ores containing 15 mass% specularite in the case of using Ore-A and Ore-E with greater surface property and higher wettability to replace all of Ore-B and half of Ore-D, respectively. Furthermore, the vertical sintering speed and the productivity of sinter improved by approximately 23% and 20%, respectively.展开更多
The sintering performance of three typical specular hematite ores(coarse SO-A,intermediate SO-B and ultrafine SO-C)was compared in an industrial ore blend through pilot-scale sinter pot tests.The effect of particle ...The sintering performance of three typical specular hematite ores(coarse SO-A,intermediate SO-B and ultrafine SO-C)was compared in an industrial ore blend through pilot-scale sinter pot tests.The effect of particle size of specular hematite ores on their granulation and sintering performance was revealed.Compared with the coarse SO-A fine and ultrafine SO-C concentrate,the intermediate SO-B showed inferior granulation and sintering performance characterized with poorer bed permeability and productivity,lower sinter strength and higher fuel rates.A new material preparation method was hence proposed and verified at both pilot and industrial scales.The proposed method by mixing SO-B with a high amount of goethitetype iron ore fines was found to be an effective way in improving the granulation and assimilative characteristics of ore blend comprising 31%intermediate SO-B,leading to improved sinter productivity and lowered fuel rates.The metallurgical properties and microstructure of sinters were also investigated.The sinters obtained through the proposed preparation method were generally stronger and more reducible on account of better sinter structure with more relict hematite ultimately connected with needle-like silico-ferrite of calcium and aluminum and lower porosity.展开更多
基金This work was supported by the National Natural Science of China(51904001)Anhui Provincial Natural Science(2008085QE223)China Postdoctoral Science(2020M673590XB).
文摘Chlorite,as the most representative gangue mineral associated with specularite,of which the separation of these two minerals is difficult.This paper investigated the depression effect of taurine on specularite/chlorite separation via flotation experiments,adsorption tests,contact angle measurements,Zeta potential detection,FT-IR measurements,and XPS analyses.The results of single mineral flotation indicated that chlorite could be depressed selectively by taurine with the recovery of less than 30%,but the floatability of specularite remains high with recovery rate of 81.77%at pH 10.The artificial mixed mineral flotation results confirmed the effectiveness of taurine as a depressant.Surface adsorption,contact angle,and Zeta potential detection revealed taurine primarily adsorbs on the chlorite surface,which hampered the DDA’s subsequent adsorption and results in the chlorite’s poor floatability.The FT-IR spectra and XPS analyses provided further proof that taurine adsorbed on chlorite surface as an electron donor,and part of the electrons transferred from the sulfonic acid group of taurine to metal ions during the adsorption process.In addition,the hydrogen bond between amino-group of taurine and O ions in chlorite surface was also formed in the adsorption process.Finally,optimized adsorption configurations of taurine on chlorite surfaces were proposed.
基金jointly funded by the National Natural Science Foundation of China (No.51304181)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (No.QYZDJ-SSW-JSC021)the Key Research Program of Chinese Academy of Sciences (No.ZDRW-ZS-2018-1)。
文摘This study used specularite, a high-gradient magnetic separation concentrate, as a raw material in reverse flotation.An iron concentrate with a grade of 65.1 wt% and a recovery rate of 75.31% were obtained.A centrifugal concentrator served as the deep purification equipment for the preparation of iron oxide red pigments, and its optimal rotating drum speed, feed concentration, and other conditions were determined.Under optimal conditions, a high-purity iron oxide concentrate with a grade of 69.38 wt% and a recovery rate of 80.89% were obtained and used as a raw material for preparing iron oxide red pigment.Calcining with sulfuric acid produced iron red pigments with different hues.Simultaneously, middlings with a grade of 60.20 wt% and a recovery rate of 17.51% were obtained and could be used in blast furnace ironmaking.High-value utilization of specularite beneficiation products was thus achieved.
基金Project(50804059)supported by the National Natural Science Foundation of ChinaProject(CX2012B121)supported by the Innovation Research Program for Graduate Student of Hunan Province,China
文摘A modified humic acid(MHA) binder was tested as a substitute for bentonite to prepare qualified specularite pellets. The results show that there is stronger chemisorption between organic functional groups in MHA binder molecular and specularite particles, improving the green pellet strength. MHA binder has obvious effect on the strength and microstructure of preheated pellets due to the thermal decomposition of organic matters in MHA binder. Appropriately increasing preheating temperature or time can eliminate the adverse impact of organic matters on the preheated pellet strength. Compared with the bentonite pellets, the roasted pellets with MHA binder have a more compact microstructure, and the recrystallization of the Fe2O3 crystal grains is better.Consequently, under optimal conditions, 0.75%(mass fraction) MHA binder pellets have equal or better pellet strengths and contain1.06% more total iron than 2 % bentonite pellets. The testing results indicate that MHA binder is a promising and effective alternative to bentonite for the specularite pellets.
文摘Specularite concentrates have advantages of high ferrous grade, less harmful impurities and low price. However, the small size and poor granulation behavior of specularite concentrates consequently deteriorate the permeability of sinter bed and reduce the productivity of sinter, resulting in un-effective utilization in sintering process. The granulation experiments were carried out when specularite concentrates matched with five kinds of fine or coarse ores, and the effects of surface property and wettability of fine or coarse ores on granulation behavior of specularite concentrates were investigated. Then, the optimized ore blending recipes were proposed to strengthen the granulation behavior of specularite concentrates. The results indicated that the growth index increased with increasing the specific surface area of fine ores and had a positive linear correlation with the circularity degree of coarse ores, whereas negative correlations exist between the growth index and the contact angle of fine or coarse ores. Compared with the concentrates, the growth index increased by approximately 22% scheme of blended ores containing 15 mass% specularite in the case of using Ore-A and Ore-E with greater surface property and higher wettability to replace all of Ore-B and half of Ore-D, respectively. Furthermore, the vertical sintering speed and the productivity of sinter improved by approximately 23% and 20%, respectively.
基金financially supported by Hunan Provincial Co-innovative Center for Clean and Efficient Utilization of Strategic Metal Mineral Resourcesthe support from China Scholarship Council/CSIRO Joint Scholarship Program
文摘The sintering performance of three typical specular hematite ores(coarse SO-A,intermediate SO-B and ultrafine SO-C)was compared in an industrial ore blend through pilot-scale sinter pot tests.The effect of particle size of specular hematite ores on their granulation and sintering performance was revealed.Compared with the coarse SO-A fine and ultrafine SO-C concentrate,the intermediate SO-B showed inferior granulation and sintering performance characterized with poorer bed permeability and productivity,lower sinter strength and higher fuel rates.A new material preparation method was hence proposed and verified at both pilot and industrial scales.The proposed method by mixing SO-B with a high amount of goethitetype iron ore fines was found to be an effective way in improving the granulation and assimilative characteristics of ore blend comprising 31%intermediate SO-B,leading to improved sinter productivity and lowered fuel rates.The metallurgical properties and microstructure of sinters were also investigated.The sinters obtained through the proposed preparation method were generally stronger and more reducible on account of better sinter structure with more relict hematite ultimately connected with needle-like silico-ferrite of calcium and aluminum and lower porosity.