The marine accidents are among the main components of the Zanzibar Disaster Management Policy (2011) and the Zanzibar Blue Economy Policy (2020). These policies aimed to institute legal frame works and procedures for ...The marine accidents are among the main components of the Zanzibar Disaster Management Policy (2011) and the Zanzibar Blue Economy Policy (2020). These policies aimed to institute legal frame works and procedures for reducing both the frequency of marine accidents and their associated fatalities. These fatalities include deaths, permanent disabilities and loss of properties which may result into increased poverty levels as per the sustainable development goal one (SDG1) which stipulates on ending the poverty in all its forms everywhere. Thus, in the way to support these Government efforts, the influence of climate and weather on marine accidents along Zanzibar and Pemba Channels was investigated. The study used the 10 years (2013-2022) records of daily rainfall and hourly wind speed acquired from Tanzania Meteorological Authority (TMA) (for the observation stations of Zanzibar, Pemba, Dares Salaam and Tanga), and the significant wave heights data, which was freely downloaded from Globally Forecasting System (GFS-World model of 13 km resolution). The marine accident records were collected from TASAC and Zanzibar Maritime Authority (ZMA), and the anecdotal information was collected from heads of quay and boat captains in different areas of Zanzibar. The Mann Kendal test, was used to determine the slopes and trends direction of used weather parameters, while the Pearson correlations analysis and t-tests were used to understand the significance of the underlying relationship between the weather and marine accidents. The paired t-test was used to evaluate the extent to which weather parameters affect the marine accidents. Results revealed that the variability of extreme weather events (rainfall, ocean waves and wind speed) was seen to be among the key factors for most of the recorded marine accidents. For instance, in Pemba high rainfall showed an increasing trend of extreme rainfall events, while Zanzibar has shown a decreasing trend of these events. As for extreme wind events, results show that Dar es Salaam and Tanga had an increasing trend, while Zanzibar and Pemba had shown a decreasing trend. As for the monthly variability of frequencies of extreme rainfall events, March to May (MAM) season was shown to have the highest frequencies over all stations with the peaks at Zanzibar and Pemba. On the other hand, high frequency of extreme wind speed was observed from May to September with peaks in June to July, and the highest strength was observed during 09:00 to 15:00 GMT. Moreover, results revealed an increasing trend of marine accidents caused by bad weather except during November. Also, results showed that bad weather conditions contributed to 48 (32%) of all 150 recorded accidents. Further results revealed significant correlation between the extreme wind and marine accidents, with the highest strong correlation of r = 0.71 (at p ≤ 0.007) and r = 0.75 (at p ≤ 0.009) at Tanga and Pemba, indicating the occurrence of more marine accidents at the Pemba channel. Indeed, strong correlation of r = 0.6 between extreme rainfall events and marine accidents was shown in Pemba, while the correlations between extremely significant wave heights and marine accidents were r = 0.41 (at p ≤ 0.006) and r = 0.34 (p ≤ 0.0006) for Pemba and Zanzibar Channel, respectively. In conclusion, the study has shown high influence between marine accidents and bad weather events with more impacts in Pemba and Zanzibar. Thus, the study calls for more work to be undertaken to raise the awareness on marine accidents as a way to alleviate the poverty and enhance the sustainable blue economy.展开更多
The SHRP2 Naturalistic Driving Study was used to evaluate the impact of various work zone and driver characteristics on back of queue safety critical events (crash, near-crash, or conflicts) The model included 43 SCE ...The SHRP2 Naturalistic Driving Study was used to evaluate the impact of various work zone and driver characteristics on back of queue safety critical events (crash, near-crash, or conflicts) The model included 43 SCE and 209 “normal” events which were used as controls. The traces included representing 209 unique drivers. A Mixed-Effects Logistic Regression model was developed with probability of a SCE as the response variable and driver and work zone characteristics as predictor variables. The final model indicated glances over 1 second away from the driving task and following closely increased risk of an SCE by 3.8 times and 2.9 times, respectively. Average speed was negatively correlated to crash risk. This is counterintuitive since in most cases, it is expected that higher speeds are related to back of queue crashes. However, most queues form under congested conditions. As a result, vehicles encountering a back of queue would be more likely to be traveling at lower speeds.展开更多
Extreme values of wind speed were studied based on the highly detailed ERA5 dataset covering the central part of the Kara Sea. Cases in which the ice coverage of the cells exceeded 15% were filtered. Our study shows t...Extreme values of wind speed were studied based on the highly detailed ERA5 dataset covering the central part of the Kara Sea. Cases in which the ice coverage of the cells exceeded 15% were filtered. Our study shows that the wind speed extrema obtained from station observations, as well as from modelling results in the framework of mesoscale models, can be divided into two groups according to their probability distribution laws. One group is specifically designated as black swans, with the other referred to as dragons (or dragon-kings). In this study we determined that the data of ERA5 accurately described the swans, but did not fully reproduce extrema related to the dragons;these extrema were identified only in half of ERA5 grid points. Weibull probability distribution function (PDF) parameters were identified in only a quarter of the pixels. The parameters were connected almost deterministically. This converted the Weibull function into a one-parameter dependence. It was not clear whether this uniqueness was a consequence of the features of the calculation algorithm used in ERA5, or whether it was a consequence of a relatively small area being considered, which had the same wind regime. Extremes of wind speed arise as mesoscale features and are associated with hydrodynamic features of the wind flow. If the flow was non-geostrophic and if its trajectory had a substantial curvature, then the extreme velocities were distributed according to a rule similar to the Weibull law.展开更多
文摘The marine accidents are among the main components of the Zanzibar Disaster Management Policy (2011) and the Zanzibar Blue Economy Policy (2020). These policies aimed to institute legal frame works and procedures for reducing both the frequency of marine accidents and their associated fatalities. These fatalities include deaths, permanent disabilities and loss of properties which may result into increased poverty levels as per the sustainable development goal one (SDG1) which stipulates on ending the poverty in all its forms everywhere. Thus, in the way to support these Government efforts, the influence of climate and weather on marine accidents along Zanzibar and Pemba Channels was investigated. The study used the 10 years (2013-2022) records of daily rainfall and hourly wind speed acquired from Tanzania Meteorological Authority (TMA) (for the observation stations of Zanzibar, Pemba, Dares Salaam and Tanga), and the significant wave heights data, which was freely downloaded from Globally Forecasting System (GFS-World model of 13 km resolution). The marine accident records were collected from TASAC and Zanzibar Maritime Authority (ZMA), and the anecdotal information was collected from heads of quay and boat captains in different areas of Zanzibar. The Mann Kendal test, was used to determine the slopes and trends direction of used weather parameters, while the Pearson correlations analysis and t-tests were used to understand the significance of the underlying relationship between the weather and marine accidents. The paired t-test was used to evaluate the extent to which weather parameters affect the marine accidents. Results revealed that the variability of extreme weather events (rainfall, ocean waves and wind speed) was seen to be among the key factors for most of the recorded marine accidents. For instance, in Pemba high rainfall showed an increasing trend of extreme rainfall events, while Zanzibar has shown a decreasing trend of these events. As for extreme wind events, results show that Dar es Salaam and Tanga had an increasing trend, while Zanzibar and Pemba had shown a decreasing trend. As for the monthly variability of frequencies of extreme rainfall events, March to May (MAM) season was shown to have the highest frequencies over all stations with the peaks at Zanzibar and Pemba. On the other hand, high frequency of extreme wind speed was observed from May to September with peaks in June to July, and the highest strength was observed during 09:00 to 15:00 GMT. Moreover, results revealed an increasing trend of marine accidents caused by bad weather except during November. Also, results showed that bad weather conditions contributed to 48 (32%) of all 150 recorded accidents. Further results revealed significant correlation between the extreme wind and marine accidents, with the highest strong correlation of r = 0.71 (at p ≤ 0.007) and r = 0.75 (at p ≤ 0.009) at Tanga and Pemba, indicating the occurrence of more marine accidents at the Pemba channel. Indeed, strong correlation of r = 0.6 between extreme rainfall events and marine accidents was shown in Pemba, while the correlations between extremely significant wave heights and marine accidents were r = 0.41 (at p ≤ 0.006) and r = 0.34 (p ≤ 0.0006) for Pemba and Zanzibar Channel, respectively. In conclusion, the study has shown high influence between marine accidents and bad weather events with more impacts in Pemba and Zanzibar. Thus, the study calls for more work to be undertaken to raise the awareness on marine accidents as a way to alleviate the poverty and enhance the sustainable blue economy.
文摘The SHRP2 Naturalistic Driving Study was used to evaluate the impact of various work zone and driver characteristics on back of queue safety critical events (crash, near-crash, or conflicts) The model included 43 SCE and 209 “normal” events which were used as controls. The traces included representing 209 unique drivers. A Mixed-Effects Logistic Regression model was developed with probability of a SCE as the response variable and driver and work zone characteristics as predictor variables. The final model indicated glances over 1 second away from the driving task and following closely increased risk of an SCE by 3.8 times and 2.9 times, respectively. Average speed was negatively correlated to crash risk. This is counterintuitive since in most cases, it is expected that higher speeds are related to back of queue crashes. However, most queues form under congested conditions. As a result, vehicles encountering a back of queue would be more likely to be traveling at lower speeds.
文摘Extreme values of wind speed were studied based on the highly detailed ERA5 dataset covering the central part of the Kara Sea. Cases in which the ice coverage of the cells exceeded 15% were filtered. Our study shows that the wind speed extrema obtained from station observations, as well as from modelling results in the framework of mesoscale models, can be divided into two groups according to their probability distribution laws. One group is specifically designated as black swans, with the other referred to as dragons (or dragon-kings). In this study we determined that the data of ERA5 accurately described the swans, but did not fully reproduce extrema related to the dragons;these extrema were identified only in half of ERA5 grid points. Weibull probability distribution function (PDF) parameters were identified in only a quarter of the pixels. The parameters were connected almost deterministically. This converted the Weibull function into a one-parameter dependence. It was not clear whether this uniqueness was a consequence of the features of the calculation algorithm used in ERA5, or whether it was a consequence of a relatively small area being considered, which had the same wind regime. Extremes of wind speed arise as mesoscale features and are associated with hydrodynamic features of the wind flow. If the flow was non-geostrophic and if its trajectory had a substantial curvature, then the extreme velocities were distributed according to a rule similar to the Weibull law.