A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω t...A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.展开更多
Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of mul...Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of multiple variable factors including wind speed, wind direction, internal heat source and building structural thermal mass, the conventional methods for quantifying ventilation rate simply using dominant wind direction and average wind speed may not accurately describe the characteristic performance of natural ventilation. From a new point of view, the natural ventilation performance of a single room building under fluctuating wind speed condition using the Monte-Carlo simulation approach was investigated by incorporating building facade thermal mass effect. Given a same hourly turbulence intensity distribution, the wind speeds with 1 rain frequency fluctuations were generated using a stochastic model, the modified GARCH model. Comparisons of natural ventilation profiles, effective ventilation rates, and air conditioning electricity use for a three-month period show statistically significant differences (for 80% confidence interval) between the new calculations and the traditional methods based on hourly average wind speed.展开更多
In order to get the motion of a cam follower to meet its ideal requirements, we have to design the cam profile by considering its running speed fluctuation. In this paper, taking the beat up motion mechanism of a proj...In order to get the motion of a cam follower to meet its ideal requirements, we have to design the cam profile by considering its running speed fluctuation. In this paper, taking the beat up motion mechanism of a projectile loom as an example, a cam design method is illustrated with its spced fluctuation being considered.展开更多
By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerica...By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerical solving of internal flow fields of turbomachineries.Taking an unshrouded radial impeller with the working fluid of water vapour as the research object,the flow response to the fluctuation of rotational speed was calculated.By comparing the surface pressure profiles and velocity contours calculated by the code and commercial software respectively,the accuracy of flow solver was verified.The analysis of flow response data indicates that,as the working condition shifts closer towards the surge boundary,the response of flow parameters such as mass flow and aerodynamic torque will be more nonsynchronous with the fluctuation of rotational speed,and also the influence of density variation on mass flow variation will be smaller.Moreover,the transient variation region of working condition performance will deviate farther away from the steady performance curve as the working condition approaches the surge boundary.Compared to the working conditions with small mass flows,the distribution characteristics of pressure difference load on the blade surface vary little under large mass flow conditions.The reduction of fluctuation amplitude of rotational speed exerts no influence on abating the hysteresis of flow response.展开更多
The rotating speed fluctuation for turbomachinery is a common problem, which will cause severe destruction for equipments and basis when the fluctuation is very strong. In this paper,in order to study the transient re...The rotating speed fluctuation for turbomachinery is a common problem, which will cause severe destruction for equipments and basis when the fluctuation is very strong. In this paper,in order to study the transient response characteristics of a radial vane pump subjected to slight( 5%) and strong( 20%)fluctuating rotational speeds, the variation characteristics of the external hydraulic performances are numerically predicted by means of computational fluid dynamics( CFD) technology. The results manifest that the responses of head and flow rate are different relative to the fluctuating characteristics of rotational speed. The response of the former is very satisfied in synchronism,while that of the latter is hysteretic. Meanwhile,it is found that the variation tendencies of the static pressures at the inlet and outlet of the pump are completely opposite, while the response characteristics of the dynamic pressures at the inlet and outlet are nearly identical.Subsequently,in order to further reveal the transient behavior during the instantaneous operating periods,two non-dimensional parameters are employed to deeply analyze it. The result shows that the variation tendencies of these two parameters are also approximately opposite.Moreover,the quasi-steady assumption is not able to be used to accurately assess the transient flow during transient operating periods. The comparison results show that the transient behavior does not show obvious distinctions between slight and strong fluctuating rotating speeds.展开更多
为研究双质量飞轮(dual mass flywheel,DMF)对整车传动系扭振的影响,基于DMF理论搭建了仿真模型,并通过试验台架测试了DMF在不同振幅工况下的扭转刚度特性。通过不同工况下迟滞曲线仿真和试验对比,验证了DMF仿真模型的精度。基于准确的...为研究双质量飞轮(dual mass flywheel,DMF)对整车传动系扭振的影响,基于DMF理论搭建了仿真模型,并通过试验台架测试了DMF在不同振幅工况下的扭转刚度特性。通过不同工况下迟滞曲线仿真和试验对比,验证了DMF仿真模型的精度。基于准确的DMF模型,搭建了传动系扭振仿真模型,并通过整车状态怠速和3挡节气门全开工况的仿真和试验转速波动对标,验证了传动系扭振模型的精度。通过DMF设计参数的灵敏度分析,研究了传动系扭振开发和DMF设计的匹配。结果显示,DMF能衰减70%~90%的发动机燃烧主阶次转速波动幅值,极大降低扭振问题发生的风险。展开更多
Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculat...Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline.展开更多
基金Projects(51239005,51009072) supported by the National Natural Science Foundation of ChinaProject(2011BAF14B04) supported by the National Science&Technology Pillar Program of ChinaProject(13JDG084) supported by the Research Foundation for Advanced Talents of Jiansu University,China
文摘A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.
文摘Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of multiple variable factors including wind speed, wind direction, internal heat source and building structural thermal mass, the conventional methods for quantifying ventilation rate simply using dominant wind direction and average wind speed may not accurately describe the characteristic performance of natural ventilation. From a new point of view, the natural ventilation performance of a single room building under fluctuating wind speed condition using the Monte-Carlo simulation approach was investigated by incorporating building facade thermal mass effect. Given a same hourly turbulence intensity distribution, the wind speeds with 1 rain frequency fluctuations were generated using a stochastic model, the modified GARCH model. Comparisons of natural ventilation profiles, effective ventilation rates, and air conditioning electricity use for a three-month period show statistically significant differences (for 80% confidence interval) between the new calculations and the traditional methods based on hourly average wind speed.
文摘In order to get the motion of a cam follower to meet its ideal requirements, we have to design the cam profile by considering its running speed fluctuation. In this paper, taking the beat up motion mechanism of a projectile loom as an example, a cam design method is illustrated with its spced fluctuation being considered.
基金supported by the National Key Basic Research Program of China (No.2012CB026000 )the National Science Foundation for Young Scientists (No.2014011155)
文摘By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerical solving of internal flow fields of turbomachineries.Taking an unshrouded radial impeller with the working fluid of water vapour as the research object,the flow response to the fluctuation of rotational speed was calculated.By comparing the surface pressure profiles and velocity contours calculated by the code and commercial software respectively,the accuracy of flow solver was verified.The analysis of flow response data indicates that,as the working condition shifts closer towards the surge boundary,the response of flow parameters such as mass flow and aerodynamic torque will be more nonsynchronous with the fluctuation of rotational speed,and also the influence of density variation on mass flow variation will be smaller.Moreover,the transient variation region of working condition performance will deviate farther away from the steady performance curve as the working condition approaches the surge boundary.Compared to the working conditions with small mass flows,the distribution characteristics of pressure difference load on the blade surface vary little under large mass flow conditions.The reduction of fluctuation amplitude of rotational speed exerts no influence on abating the hysteresis of flow response.
基金Zhejiang Provincial Natural Science Foundation of China(No.LY14E090011)Quzhou Science and Technology Development Fund,China(No.20121057)Zhejiang Provincial Science and Technology Project,China(No.2015C31129)
文摘The rotating speed fluctuation for turbomachinery is a common problem, which will cause severe destruction for equipments and basis when the fluctuation is very strong. In this paper,in order to study the transient response characteristics of a radial vane pump subjected to slight( 5%) and strong( 20%)fluctuating rotational speeds, the variation characteristics of the external hydraulic performances are numerically predicted by means of computational fluid dynamics( CFD) technology. The results manifest that the responses of head and flow rate are different relative to the fluctuating characteristics of rotational speed. The response of the former is very satisfied in synchronism,while that of the latter is hysteretic. Meanwhile,it is found that the variation tendencies of the static pressures at the inlet and outlet of the pump are completely opposite, while the response characteristics of the dynamic pressures at the inlet and outlet are nearly identical.Subsequently,in order to further reveal the transient behavior during the instantaneous operating periods,two non-dimensional parameters are employed to deeply analyze it. The result shows that the variation tendencies of these two parameters are also approximately opposite.Moreover,the quasi-steady assumption is not able to be used to accurately assess the transient flow during transient operating periods. The comparison results show that the transient behavior does not show obvious distinctions between slight and strong fluctuating rotating speeds.
文摘为研究双质量飞轮(dual mass flywheel,DMF)对整车传动系扭振的影响,基于DMF理论搭建了仿真模型,并通过试验台架测试了DMF在不同振幅工况下的扭转刚度特性。通过不同工况下迟滞曲线仿真和试验对比,验证了DMF仿真模型的精度。基于准确的DMF模型,搭建了传动系扭振仿真模型,并通过整车状态怠速和3挡节气门全开工况的仿真和试验转速波动对标,验证了传动系扭振模型的精度。通过DMF设计参数的灵敏度分析,研究了传动系扭振开发和DMF设计的匹配。结果显示,DMF能衰减70%~90%的发动机燃烧主阶次转速波动幅值,极大降低扭振问题发生的风险。
文摘Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline.