The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. Ho...The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.展开更多
Cross-over method is established to predict necking point for PET high- speed fiber spinning. Even slowly crystallizing polymers such as PET can crystallize on the spinline at sufficiently high spinning speed. The dev...Cross-over method is established to predict necking point for PET high- speed fiber spinning. Even slowly crystallizing polymers such as PET can crystallize on the spinline at sufficiently high spinning speed. The development of rtmning velocity, temperature, crystallinity and theological force is investigated for the take-up velocity over a range of 6 000 - 10 000 m/min. The position of necking point, temperature rise and abrupt increase of crystallinity move closer to the spinneret with the increase of take-up velocity,展开更多
Control model of ultrasonic motor is the foundation for high control performance.The frequency of driving voltage is commonly used as control variable in the speed control system of ultrasonic motor.Speed control mode...Control model of ultrasonic motor is the foundation for high control performance.The frequency of driving voltage is commonly used as control variable in the speed control system of ultrasonic motor.Speed control model with the input frequency can significantly improve speed control performance.Step response of rotating speed is tested.Then,the transfer function model is identified through characteristic point method.Considering time-varying characteristics of the model parameters,the variables are fitted with frequency and speed as the independent variables,and the variable model of ultrasonic motor system is obtained,with consideration of the nonlinearity of ultrasonic motor system.The proposed model can be used in the design and analysis of the speed control system in ultrasonic motor.展开更多
Combining the observation data from five Multi-GNSS Experiment(MGEX)stations with the precise orbit and clock products from Global Positioning System(GPS)and BeiDou Navigation Satellite System(BDS),we studied the mode...Combining the observation data from five Multi-GNSS Experiment(MGEX)stations with the precise orbit and clock products from Global Positioning System(GPS)and BeiDou Navigation Satellite System(BDS),we studied the model of combined GPS/BDS precise point positioning,and then analyzed the convergence speed and short-time(6 h)positioning accuracy.The calculation results show that in static positioning,the average convergence time of GPS is about 50 min,and its horizontal accuracy is better than 2 cm while the vertical accuracy is better than 4 cm.The convergence speed of combined GPS/BDS is about 40 min,and its positioning accuracy is close to that of GPS.In kinematic positioning,the average convergence time of GPS is about 72 min,and its horizontal accuracy is better than 5 cm while the vertical accuracy is better than 12 cm.The average convergence time of GPS/BDS is about 57 min,and its horizontal accuracy is better than 3 cm while the vertical accuracy is better than 9 cm.Combined GPS/BDS has significantly improved the convergence speed,and its positioning accuracy is slightly than that of GPS.展开更多
It is now well known that coastal urban local climate has been showing changing pattern due to global climate change. This communication attempts to explore fluctuating pattern of urban average monthly wind speed duri...It is now well known that coastal urban local climate has been showing changing pattern due to global climate change. This communication attempts to explore fluctuating pattern of urban average monthly wind speed during past 50 years (1961-2010). It shows peculiar results taking Karachi (24?53'N, 67?00'E), a coastal mega-city of Pakistan, as a case study. Mann-Kendall trend test shows that March, April and October and both summer and winter seasons show positive trends for the average monthly wind speed during the whole study period (1961-2010). For the earlier 25 years data, it has been found that January, March, May, August, November and December and annual wind speed data have shown the negative trends. Only summer season has shown the positive trend for the wind speed. Similarly, for the most recent 25 years data it has been found that January, February, March, April, May, June, October, November and December and annual and both summer and winter wind speed data have shown the positive trends showing some degree of change in wind speed pattern. Probabilistic analysis reveals that average monthly wind speed data sets follow lognormal, logistic, largest extreme value, and Weibull (two-and three-parameters) probability distributions. Change point analysis has also confirmed the change in the pattern of observed average monthly wind speed data near 1992. The analysis performed reveals the effect of global warming on the local urban wind speed which appears to be temporal non-stationary.展开更多
针对传统SURF算法(speeded up robust features)在拼接高分辨率无人机航拍图像时运行速度慢、特征匹配率低的特点,提出了一种基于IB-SURF(image block-SURF)技术的无人机图像拼接算法。结合无人机定位定姿系统(position and orientation...针对传统SURF算法(speeded up robust features)在拼接高分辨率无人机航拍图像时运行速度慢、特征匹配率低的特点,提出了一种基于IB-SURF(image block-SURF)技术的无人机图像拼接算法。结合无人机定位定姿系统(position and orientation system,POS)求取图像重叠区域;构造掩模在无人机图像重叠区域检测特征点,减少特征提取时间;借助图像分块(image block,IB)的思想对图像划分网格,精简筛选特征点;引入Neighborhood-KNN(neighborhood-K nearest neighbors)进行特征点匹配,提高图像匹配效率。实验结果表明,IB-SURF算法有较快的运行速度和较高的特征匹配率,平均特征匹配率达到84.3%,特征匹配正确率超过95.1%,为图像高质量拼接提供了技术基础。展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 51175032, U1134201)National Basic Research Program of China (973 Program, Grant No. 2011CD711104)
文摘The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.
文摘Cross-over method is established to predict necking point for PET high- speed fiber spinning. Even slowly crystallizing polymers such as PET can crystallize on the spinline at sufficiently high spinning speed. The development of rtmning velocity, temperature, crystallinity and theological force is investigated for the take-up velocity over a range of 6 000 - 10 000 m/min. The position of necking point, temperature rise and abrupt increase of crystallinity move closer to the spinneret with the increase of take-up velocity,
基金supported by the National Natural Science Foundation of China(No.U1304501)
文摘Control model of ultrasonic motor is the foundation for high control performance.The frequency of driving voltage is commonly used as control variable in the speed control system of ultrasonic motor.Speed control model with the input frequency can significantly improve speed control performance.Step response of rotating speed is tested.Then,the transfer function model is identified through characteristic point method.Considering time-varying characteristics of the model parameters,the variables are fitted with frequency and speed as the independent variables,and the variable model of ultrasonic motor system is obtained,with consideration of the nonlinearity of ultrasonic motor system.The proposed model can be used in the design and analysis of the speed control system in ultrasonic motor.
基金supported by Director Foundation of the Institute of Seismology,China Earthquake Administration(6110).
文摘Combining the observation data from five Multi-GNSS Experiment(MGEX)stations with the precise orbit and clock products from Global Positioning System(GPS)and BeiDou Navigation Satellite System(BDS),we studied the model of combined GPS/BDS precise point positioning,and then analyzed the convergence speed and short-time(6 h)positioning accuracy.The calculation results show that in static positioning,the average convergence time of GPS is about 50 min,and its horizontal accuracy is better than 2 cm while the vertical accuracy is better than 4 cm.The convergence speed of combined GPS/BDS is about 40 min,and its positioning accuracy is close to that of GPS.In kinematic positioning,the average convergence time of GPS is about 72 min,and its horizontal accuracy is better than 5 cm while the vertical accuracy is better than 12 cm.The average convergence time of GPS/BDS is about 57 min,and its horizontal accuracy is better than 3 cm while the vertical accuracy is better than 9 cm.Combined GPS/BDS has significantly improved the convergence speed,and its positioning accuracy is slightly than that of GPS.
文摘It is now well known that coastal urban local climate has been showing changing pattern due to global climate change. This communication attempts to explore fluctuating pattern of urban average monthly wind speed during past 50 years (1961-2010). It shows peculiar results taking Karachi (24?53'N, 67?00'E), a coastal mega-city of Pakistan, as a case study. Mann-Kendall trend test shows that March, April and October and both summer and winter seasons show positive trends for the average monthly wind speed during the whole study period (1961-2010). For the earlier 25 years data, it has been found that January, March, May, August, November and December and annual wind speed data have shown the negative trends. Only summer season has shown the positive trend for the wind speed. Similarly, for the most recent 25 years data it has been found that January, February, March, April, May, June, October, November and December and annual and both summer and winter wind speed data have shown the positive trends showing some degree of change in wind speed pattern. Probabilistic analysis reveals that average monthly wind speed data sets follow lognormal, logistic, largest extreme value, and Weibull (two-and three-parameters) probability distributions. Change point analysis has also confirmed the change in the pattern of observed average monthly wind speed data near 1992. The analysis performed reveals the effect of global warming on the local urban wind speed which appears to be temporal non-stationary.