In the paper a referral system to assist the medical experts in the screening/referral of diabetic retinopathy is suggested. The system has been developed by a sequential use of different existing mathematical techniq...In the paper a referral system to assist the medical experts in the screening/referral of diabetic retinopathy is suggested. The system has been developed by a sequential use of different existing mathematical techniques. These techniques involve speeded up robust features(SURF), K-means clustering and visual dictionaries(VD). Three databases are mixed to test the working of the system when the sources are dissimilar. When experiments were performed an area under the curve(AUC) of 0.9343 was attained. The results acquired from the system are promising.展开更多
This article presents a good robust and real-time system scheme of the mobile robot obstacle detection and navigation, which principle of work is based on the feature descriptor SURF. In this scheme, firstly, the imag...This article presents a good robust and real-time system scheme of the mobile robot obstacle detection and navigation, which principle of work is based on the feature descriptor SURF. In this scheme, firstly, the image information of the mobile robot path was captured by the binocular camera; then the feature points were extracted and corresponding matched using SURF to the binocular images as the undetected obstacles; finally fixed the position of the objective by the parallax between the matching points combining with the binocular vision calibration model. Theoretical derivation and experimental results show that this scheme is more accurate for the detection and navigation of the interest points. It has fast matching speed and high accuracy and low error. So, it has certain practical effect and popularizing value for the mobile robot real-time obstacle avoidance and navigation.展开更多
Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration whe...Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.展开更多
Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kin...Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kinds of researches on forensic detection have been presented,and it provides less accuracy.This paper proposed a novel forgery detection technique in image frames of the videos using enhanced Convolutional Neural Network(CNN).In the initial stage,the input video is taken as of the dataset and then converts the videos into image frames.Next,perform pre-sampling using the Adaptive Rood Pattern Search(ARPS)algorithm intended for reducing the useless frames.In the next stage,perform preprocessing for enhancing the image frames.Then,face detection is done as of the image utilizing the Viola-Jones algorithm.Finally,the improved Crow Search Algorithm(ICSA)has been used to select the extorted features and inputted to the Enhanced Convolutional Neural Network(ECNN)classifier for detecting the forged image frames.The experimental outcome of the proposed system has achieved 97.21%accuracy compared to other existing methods.展开更多
A novel method based on interval temporal syntactic model was proposed to recognize human activities in video flow. The method is composed of two parts: feature extract and activities recognition. Trajectory shape des...A novel method based on interval temporal syntactic model was proposed to recognize human activities in video flow. The method is composed of two parts: feature extract and activities recognition. Trajectory shape descriptor, speeded up robust features(SURF) and histograms of optical flow(HOF) were proposed to represent human activities, which provide more exhaustive information to describe human activities on shape, structure and motion. In the process of recognition, a probabilistic latent semantic analysis model(PLSA) was used to recognize sample activities at the first step. Then, an interval temporal syntactic model, which combines the syntactic model with the interval algebra to model the temporal dependencies of activities explicitly, was introduced to recognize the complex activities with a time relationship. Experiments results show the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases for the recognition of complex activities.展开更多
Robust and efficient vision systems are essential in such a way to support different kinds of autonomous robotic behaviors linked to the capability to interact with the surrounding environment, without relying on any ...Robust and efficient vision systems are essential in such a way to support different kinds of autonomous robotic behaviors linked to the capability to interact with the surrounding environment, without relying on any a priori knowledge. Within space missions, above all those involving rovers that have to explore planetary surfaces, vision can play a key role in the improvement of autonomous navigation functionalities: besides obstacle avoidance and hazard detection along the traveling, vision can in fact provide accurate motion estimation in order to constantly monitor all paths executed by the rover. The present work basically regards the development of an effective visual odometry system, focusing as much as possible on issues such as continuous operating mode, system speed and reliability.展开更多
文摘In the paper a referral system to assist the medical experts in the screening/referral of diabetic retinopathy is suggested. The system has been developed by a sequential use of different existing mathematical techniques. These techniques involve speeded up robust features(SURF), K-means clustering and visual dictionaries(VD). Three databases are mixed to test the working of the system when the sources are dissimilar. When experiments were performed an area under the curve(AUC) of 0.9343 was attained. The results acquired from the system are promising.
文摘This article presents a good robust and real-time system scheme of the mobile robot obstacle detection and navigation, which principle of work is based on the feature descriptor SURF. In this scheme, firstly, the image information of the mobile robot path was captured by the binocular camera; then the feature points were extracted and corresponding matched using SURF to the binocular images as the undetected obstacles; finally fixed the position of the objective by the parallax between the matching points combining with the binocular vision calibration model. Theoretical derivation and experimental results show that this scheme is more accurate for the detection and navigation of the interest points. It has fast matching speed and high accuracy and low error. So, it has certain practical effect and popularizing value for the mobile robot real-time obstacle avoidance and navigation.
基金supported by the National Natural Science Foundation of China (60802043)the National Basic Research Program of China(973 Program) (2010CB327900)
文摘Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.
文摘Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kinds of researches on forensic detection have been presented,and it provides less accuracy.This paper proposed a novel forgery detection technique in image frames of the videos using enhanced Convolutional Neural Network(CNN).In the initial stage,the input video is taken as of the dataset and then converts the videos into image frames.Next,perform pre-sampling using the Adaptive Rood Pattern Search(ARPS)algorithm intended for reducing the useless frames.In the next stage,perform preprocessing for enhancing the image frames.Then,face detection is done as of the image utilizing the Viola-Jones algorithm.Finally,the improved Crow Search Algorithm(ICSA)has been used to select the extorted features and inputted to the Enhanced Convolutional Neural Network(ECNN)classifier for detecting the forged image frames.The experimental outcome of the proposed system has achieved 97.21%accuracy compared to other existing methods.
基金Project(50808025)supported by the National Natural Science Foundation of ChinaProject(20090162110057)supported by the Doctoral Fund of Ministry of Education,China
文摘A novel method based on interval temporal syntactic model was proposed to recognize human activities in video flow. The method is composed of two parts: feature extract and activities recognition. Trajectory shape descriptor, speeded up robust features(SURF) and histograms of optical flow(HOF) were proposed to represent human activities, which provide more exhaustive information to describe human activities on shape, structure and motion. In the process of recognition, a probabilistic latent semantic analysis model(PLSA) was used to recognize sample activities at the first step. Then, an interval temporal syntactic model, which combines the syntactic model with the interval algebra to model the temporal dependencies of activities explicitly, was introduced to recognize the complex activities with a time relationship. Experiments results show the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases for the recognition of complex activities.
文摘Robust and efficient vision systems are essential in such a way to support different kinds of autonomous robotic behaviors linked to the capability to interact with the surrounding environment, without relying on any a priori knowledge. Within space missions, above all those involving rovers that have to explore planetary surfaces, vision can play a key role in the improvement of autonomous navigation functionalities: besides obstacle avoidance and hazard detection along the traveling, vision can in fact provide accurate motion estimation in order to constantly monitor all paths executed by the rover. The present work basically regards the development of an effective visual odometry system, focusing as much as possible on issues such as continuous operating mode, system speed and reliability.