Zero-carbon parks have broad prospects in carbon neutralization.As an energy hub,hydrogen energy storage plays an important role in zero-carbon parks.However,the nonlinear characteristics of hydrogen energy storage sy...Zero-carbon parks have broad prospects in carbon neutralization.As an energy hub,hydrogen energy storage plays an important role in zero-carbon parks.However,the nonlinear characteristics of hydrogen energy storage systems(HESSs)have a significant impact on the system economy.Therefore,considering the variable working condition characteristics of HESSs,a hybrid operation method is proposed for HESS,to support the efficient and economic operation of zero-carbon parks,By analyzing the operating principle of a zero-carbon park with HESS,the system structure framework and variable condition linearization model of the equipment in HESS are established.Moreover,considering the energy output characteristics of hydrogen energy storage equipment under variable working conditions,a multimodule hybrid operation strategy is proposed for electrolytic and fuel cells,effectively meeting the thermoelectric load demand of zero-carbon parks in different scenarios.Finally,the economy of the proposed hybrid operation strategy was verified in typical scenarios,using a zero-carbon park embedded with a HESS.展开更多
The promotion of energy efficiency(EE)helps address energy constraints and promote environmental sustainability.This study comprehensively explores the spatiotemporal variations,influencing factors,and configuration p...The promotion of energy efficiency(EE)helps address energy constraints and promote environmental sustainability.This study comprehensively explores the spatiotemporal variations,influencing factors,and configuration promotion paths of EE in 284 Chinese cities during 2003‒2019 using the global super-efficiency minimum distance to strong efficient frontier(G-S-MinDS),exploratory spatial data analysis(ESDA),multiscale geographically weighted regression(MGWR),and fuzzy set qualitative comparative analysis(fsQCA)methods.The findings are:①China’s cities have an annual average EE of 0.658 with a growth rate of 0.53%,showing considerable promotion potential.②Industrial structure optimization,population agglomeration,economic development,and increased green coverage contribute positively,while government intervention and openness hinder China’s urban EE.③Four configurational promotion paths for enhancing China’s urban EE are identified,where among those paths population density is a core condition,while government intervention is not.This study provides valuable insights into substantially improving urban EE,emphasizing the need for targeted policies to address energy and environmental crises in China.展开更多
Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seaso...Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m^-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003-05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003-05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area.展开更多
Background: Seasonal adjustments in body mass and energy budget are important for the survival of small birds in temperate zones. Seasonal changes in body mass, body temperature, gross energy intake(GEI), digestible e...Background: Seasonal adjustments in body mass and energy budget are important for the survival of small birds in temperate zones. Seasonal changes in body mass, body temperature, gross energy intake(GEI), digestible energy intake(DEI), body fat content, as well as length and mass of the digestive tract, were measured in Chinese Bulbuls(Pycnonotus sinensis) caught in the wild at Wenzhou, China.Methods: Body mass was determined with a Sartorius balance. The caloric contents of the dried food and feces were then determined using a oxygen bomb calorimeter. Total fat was extracted from the dried carcasses by ether extraction in a Soxhlet apparatus. The digestive tract of each bird was measured and weighed, and was then dried to a constant mass.Results: Body mass showed a significant seasonal variation and was higher in spring and winter than in summer and autumn. Body fat was higher in winter than in other seasons. GEI and DEI were significantly higher in winter.The length and mass of the digestive tract were greatest in winter and the magnitude of both these parameters was positively correlated with body mass, GEI and DEI. Small passerines typically have higher daily energy expenditure in winter, necessitating increased food consumption.Conclusions: This general observation is consistent with the observed winter increase in gut volume and body mass in Chinese Bulbuls. These results suggest that Chinese Bulbuls adjust to winter conditions by increasing their body mass, body fat, GEI, DEI and digestive tract size.展开更多
This study aimed to discuss the energy budget of Elliot's pheasant Syrmaticus ellioti in different seasons, with life and health, good growth and normal digestion of Elliot's pheasant as the tested objects, Th...This study aimed to discuss the energy budget of Elliot's pheasant Syrmaticus ellioti in different seasons, with life and health, good growth and normal digestion of Elliot's pheasant as the tested objects, The energy budget of Elliot's pheasant was measured by daily collection of the trial pheasants' excrement in the biological garden of Guangxi Normal University from March 2011 to February 2012. The results showed that the gross energy consumption, metabolic energy and excrement energy varied by season, increasing as temperature decreased. There was significant difference in gross energy consumption, metabolic energy, excrement energy between adults and nonages. There was also a trend that food digestibility of pheasants increases as temperature increases. In the same season, the food digestibility of adults was better than that of nonages. Throughout spring, summer, autumn and winter, the metabolic energy of 4-year adults were 305.77±13.40 kJ/d, 263.67±11.89 kJ/d, 357.23±25.49 kJ/d and 403.12±24.91 kJ/d, respectively, and the nonages were 284.86±17.22 kJ/d, 284. 66±15.16 kJ/d, 402. 26±31.46 kJ/d and 420. 30±31.98 kJ/d, respectively. The minimum metabolic energies were 247.65±21.81 g, 265.86±26.53 g, respectively for each group, detected between 4-year adults and 1-year nonages. Further study is needed to determine whether 29.6 C is the optimal temperature for the Elliot's pheasant.展开更多
On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a sla...On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to Septem- ber. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 mW/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Nifio3.4 index are negatively correlated.展开更多
In order to understand the characteristics of spatial and temporal variation,as well as provide effective ideas on carbon emissions and regulatory policy in Yantai,this article analyzed spatial and temporal variation ...In order to understand the characteristics of spatial and temporal variation,as well as provide effective ideas on carbon emissions and regulatory policy in Yantai,this article analyzed spatial and temporal variation of carbon emissions in Yantai based on energy consumption statistics for a variety of energy sorts together with industrial sectors from 2001 to 2011.The results were as following:First of all,Yantai's carbon emissions grew by an average of 5.5%per year during the last 10 years,and there was a peak of 10.48 million carbon in the year of 2011.Second,compared with the gross domestic product(GDP) growth rate,the figures for energy carbon emissions growth rate were smaller;however the problem of carbon emissions were still more obvious.Furthermore,carbon emissions in Yantai increased rapidly before 2008;while after 2008,it increased more slowly and gradually become stable.Third,the energy consumption was different among regions in Yantai.For instance,the energy consumption in Longkou city was the largest,which occupied 50%of the total carbon emissions in Yantai;and the energy consumption in Chang Island was generally less than 1%of the Longkou consumption.Finally,there were relative close relationships among the spatial difference of carbon emissions,regional resources endowment,economic development,industrial structure,and energy efficiency.展开更多
Energy has laid material foundation for human society during its development. Meanwhile, any change of price in the energy industry may influence social production and people’s life at all levels via an input-output ...Energy has laid material foundation for human society during its development. Meanwhile, any change of price in the energy industry may influence social production and people’s life at all levels via an input-output mechanism under which the change related to energy is surely transmitted to other industries. The price change thus incurred in all industries may adversely affect the realization of macroeconomic objective-maintaining prices at a stable level. It is, therefore, needed to conduct an empirical research related to the impact of price change in energy industry on that in other industries. According to the data coming from “China’s 2015 Input-Output Extension Table (42 Departments)” and four hypothetical basis, this article focuses on four energy sectors and analyzes how deeply the price change of them, by use of input-output model, affects that of other industrial products under five conditions where each of their price rises by 10% individually or simultaneously, and why such an influence occurs. The results show that the price rising of the energies in question leads to an upward growth in the prices of other industrial products, especially when their prices go up simultaneously. Besides, the price increase in the four energy sectors doesn’t influence other industries in an accumulation form but actually leads to a rollback in some of other industries. It is recommended to adopt diversified pricing strategies for different energy products, thus maximizing the value of each specific energy, and meanwhile achieving the goals of energy consumption reduction and price equilibrium.展开更多
This study aimed to discuss the energy budget of Elliot’s pheasant Syrmaticus ellioti in different seasons,with life and health,good growth and normal digestion of Elliot’s pheasant as the tested objects,The energy ...This study aimed to discuss the energy budget of Elliot’s pheasant Syrmaticus ellioti in different seasons,with life and health,good growth and normal digestion of Elliot’s pheasant as the tested objects,The energy budget of Elliot’s pheasant was measured by daily collection of the trial pheasants’excrement in the biological garden of Guangxi Normal University from March 2011 to February 2012.The results showed that the gross energy consumption,metabolic energy and excrement energy varied by season,increasing as temperature decreased.There was significant difference in gross energy consumption,metabolic energy,excrement energy between adults and nonages.There was also a trend that food digestibility of pheasants increases as temperature increases.In the same season,the food digestibility of adults was better than that of nonages.Throughout spring,summer,autumn and winter,the metabolic energy of 4-year adults were 305.77±13.40 kJ/d,263.67±11.89 kJ/d,357.23±25.49 kJ/d and 403.12±24.91 kJ/d,respectively,and the nonages were 284.86±17.22 kJ/d,284.66±15.16 kJ/d,402.26±31.46 kJ/d and 420.30±31.98 kJ/d,respectively.The minimum metabolic energies were 247.65±21.81 g,265.86±26.53 g,respectively for each group,detected between 4-year adults and 1-year nonages.Further study is needed to determine whether 29.6 C is the optimal temperature for the Elliot’s pheasant.展开更多
The track geometry is a critical factor that affects the running safety and riding comfort of trains moving on a high-speed railway bridge.This study addresses the mapping relationship between the track deformation an...The track geometry is a critical factor that affects the running safety and riding comfort of trains moving on a high-speed railway bridge.This study addresses the mapping relationship between the track deformation and lateral deformations of bridges.Equilibrium equations and natural boundary conditions of the track-bridge system are established based on the energy variational principle,and an analytical solution is derived for the track deformation accounting for lateral bridge deformations.A five-span simply-supported bridge with continuous welded rail has been selected as the case study.The mapping rail deformations are compared to the finite element results,and both results agree well with each other,validating the analytical method proposed in this paper.The influence factors on the mapping rail deformation are further evaluated.Results show that the mapping rail deformation is consistent with the girder displacement at the area that is away from the girder ends when the flexural stiffness ratio between the track and the bridge girder is low.The interlayer stiffness has a significant effect on the mapping rail deformation when the track flexural stiffness is of a high value.展开更多
In order to study the seasonal variation of large volume airgun signals in Hutubi,Xinjiang,we analyzed 2,936 signals of airgun source excitations during 2015-2016 received by a seismograph on the bank of the excitatio...In order to study the seasonal variation of large volume airgun signals in Hutubi,Xinjiang,we analyzed 2,936 signals of airgun source excitations during 2015-2016 received by a seismograph on the bank of the excitation pool.Firstly,the RMS value of the signal amplitude and the daily average temperature were compared after linearly superimposing the signal in days,to analyze the influence of the surface ice cover on the excitation energy release of the airgun source.The result shows that the ice cover will reduce the excitation energy,and the thicker the ice cover is,the more obvious the excitation energy reduces.Secondly,the time-frequency analysis method was used to analyze the influence of the surface ice cover on the signal frequency.It is concluded that the existence of the ice cover has little effect on the signal frequency,but it will affect the intensity of the signal around 4 Hz between 1-2 s after excitation.The cause of these phenomena is that the ice cover affects the bubble oscillation,which in turn affects the energy conversion.The study shows that when using the cross-correlation delay method to calculate the wave velocity,the signals can be divided into two periods according to the daily average temperature:with or without ice cover on the upper surface of the excitation pool.This can help eliminate the influence of the source variation and improve the accuracy of the monitoring results.展开更多
From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given....From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.展开更多
In this paper, based on the finite deformation S-R decomposition theorem, the definition of the body moment is renewed as the stem of its internal and external. The expression of the increment rate of the deformation ...In this paper, based on the finite deformation S-R decomposition theorem, the definition of the body moment is renewed as the stem of its internal and external. The expression of the increment rate of the deformation energy is derived and the physical meaning is clarified. The power variational principle and the complementary power variational principle for finite deformation mechanics are supplemented and perfected.展开更多
Improvements in the aerodynamic design will lead to more efficiency of wind turbines and higher power production. In the present study, a 3D parametric gas turbine blade geometry building code, 3DBGB, has been modifie...Improvements in the aerodynamic design will lead to more efficiency of wind turbines and higher power production. In the present study, a 3D parametric gas turbine blade geometry building code, 3DBGB, has been modified in order to include wind turbine design capabilities. This approach enables greater flexibility of the design along with the ability to design more complex geometries with relative ease. The NREL NASA Phase VI wind turbine was considered as a test case for validation and as a baseline by which modified designs could be compared. The design parameters were translated into 3DBGB input to create a 3D model of the wind turbine which can also be imported into any CAD program. Design modifications included replacing the airfoil section and modifying the thickness to chord ratio as a function of span. These models were imported into a high-fidelity CFD package, Fine/TURBO by NUMECA. Fine/TURBO is a specialized CFD platform for turbo-machinery analysis. A code-geomturbo was used to convert the 3D model of the wind turbine into the native format used to define geometries in the Fine/TURBO meshing tool, AutoGrid. The CFD results were post processed using a 3D force analysis code. The radial force variations were found to play a measurable role in the performance of wind turbine blades. The radial component of the blade surface area as it varies in span is the dominant contributor of the radial forces. Through the radial momentum equation, this radial force variation is responsible for creating the streamline curvature that leads to the expansion of the streamtube (slipstream) that is responsible for slowing the wind velocity ahead of the wind turbine leading edge, which is quantified as the axial induction factor. These same radial forces also play a role in changing the slipstream for propellers. Through the design modifications, simulated with CFD and post-processed appropriately, this connection with the radial component of area to the radial forces to the axial induction factor, and finally the wind turbine power is demonstrated. The results from the CFD analysis and 3D force analysis are presented. For the case presented, the power increases by 5.6% due to changes in airfoil thickness only.展开更多
Knowledge of sediment variation processes is essential to understand the evolution mechanism of beach morphology changes.Thus,a field measurement was conducted at the Heisha Beach,located on the west coast of the Zhuj...Knowledge of sediment variation processes is essential to understand the evolution mechanism of beach morphology changes.Thus,a field measurement was conducted at the Heisha Beach,located on the west coast of the Zhujiang River(Pearl River)Estuary,to investigate the short-term variation in suspended sediment concentrations(SSCs)and the relationship between the SSC and turbulent kinetic energy,bottom shear stress(BSS),and relative wave height.Based on extreme event analysis results,extreme events have a greater influence on turbulent kinetic energy than SSC.Although a portion of the turbulent kinetic energy dissipates directly into the water column,it plays an important role in suspended sediment motion.Most of the time,the wave-current interaction is strong enough to drive sediment incipience and resuspension.When combined,the wave-current interaction and wave-induced BSSs have a greater influence on suspended sediment transport and SSC variation than current-induced BSS alone.The relative wave height also has a strong correlation with SSC,indicating that the combined effect of water depth and wave height significantly impacts SSC variation.Water depth is mainly controlled by the tide on the beaches;thus,the effects of tides and waves should be conjunctively considered when analyzing the factors influencing SSC.展开更多
A snake algorithm has been known that it has a strong point in extracting the exact contour of an object. But it is apt to be influenced by scattered edges around the control points. Since the shape of a moving object...A snake algorithm has been known that it has a strong point in extracting the exact contour of an object. But it is apt to be influenced by scattered edges around the control points. Since the shape of a moving object in 2D image changes a lot due to its rotation and translation in the 3D space, the conventional algorithm that takes into account slowly moving objects cannot provide an appropriate solution. To utilize the advantages of the snake algorithm while minimizing the drawbacks, this paper proposes the area variation based color snake algorithm for moving object tracking. The proposed algorithm includes a new energy term which is used for preserving the shape of an object between two consecutive images. The proposed one can also segment precisely interesting objects on complex image since it is based on color information. Experiment results show that the proposed algorithm is very effective in various environments.展开更多
Earth’s crust is an anisotropic and purely heterogeneous medium, which is justified by existence of different discontinuities;our study aims to show the effect of the variation of coefficient of friction on the evolu...Earth’s crust is an anisotropic and purely heterogeneous medium, which is justified by existence of different discontinuities;our study aims to show the effect of the variation of coefficient of friction on the evolution of temperature and its impact on seismic forecasting. In this work, we are model in 2D the variation of thermal energy and temperature produced by friction at the level of fault lip as function of depth of the seismic focus and at different value of time. Earthquakes are born when the energy accumulated by friction at the level of fault is suddenly released causing damage, sometimes noticeable on the surface of earth (macroseisms), and sometimes not at all noticeable on the surface of earth (microseisms), then energy which occurs before is important to forecasting earthquake. Assuming that coefficient of friction is variable, our results have enabled us to highlight the fact that, the greater the coefficient of friction, more the temperature increases, although the temperature profile increase over time but not linearly reflecting the presence of different asperities and discontinuities zone;slip generated at the level of fault occur a variation of temperature on specific points called roughness in common agreement with the literature. A large part of energy produced by friction is dissipated in heat causing a local increases in temperature which a very short duration and called flash contact temperature, and that despite the fact that the temperature evolved in time and space, it all converged towards a perfectly distinguishable fixed point.展开更多
基金supported by Natural Science Foundation of China(no.72471087)Natural Science Foundation of Beijing Municipality(no.9242015).
文摘Zero-carbon parks have broad prospects in carbon neutralization.As an energy hub,hydrogen energy storage plays an important role in zero-carbon parks.However,the nonlinear characteristics of hydrogen energy storage systems(HESSs)have a significant impact on the system economy.Therefore,considering the variable working condition characteristics of HESSs,a hybrid operation method is proposed for HESS,to support the efficient and economic operation of zero-carbon parks,By analyzing the operating principle of a zero-carbon park with HESS,the system structure framework and variable condition linearization model of the equipment in HESS are established.Moreover,considering the energy output characteristics of hydrogen energy storage equipment under variable working conditions,a multimodule hybrid operation strategy is proposed for electrolytic and fuel cells,effectively meeting the thermoelectric load demand of zero-carbon parks in different scenarios.Finally,the economy of the proposed hybrid operation strategy was verified in typical scenarios,using a zero-carbon park embedded with a HESS.
基金the financial support provided by the National Natural Science Foundation of China[Grant No.72373138 and 71973131]Major Project of National Social Science Foundation of China[Grant No.19VHQ002].
文摘The promotion of energy efficiency(EE)helps address energy constraints and promote environmental sustainability.This study comprehensively explores the spatiotemporal variations,influencing factors,and configuration promotion paths of EE in 284 Chinese cities during 2003‒2019 using the global super-efficiency minimum distance to strong efficient frontier(G-S-MinDS),exploratory spatial data analysis(ESDA),multiscale geographically weighted regression(MGWR),and fuzzy set qualitative comparative analysis(fsQCA)methods.The findings are:①China’s cities have an annual average EE of 0.658 with a growth rate of 0.53%,showing considerable promotion potential.②Industrial structure optimization,population agglomeration,economic development,and increased green coverage contribute positively,while government intervention and openness hinder China’s urban EE.③Four configurational promotion paths for enhancing China’s urban EE are identified,where among those paths population density is a core condition,while government intervention is not.This study provides valuable insights into substantially improving urban EE,emphasizing the need for targeted policies to address energy and environmental crises in China.
基金the National Basic Research Program of China (973 Program, 2006CB500401)
文摘Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m^-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003-05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003-05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area.
基金financially supported by grants from the National Natural Science Foundation of China (No.31070366 and No.31470472)the Natural Science Foundation (LY13C030005) in Zhejian Provincethe Zhejiang Province ‘Xinmiao’ Project
文摘Background: Seasonal adjustments in body mass and energy budget are important for the survival of small birds in temperate zones. Seasonal changes in body mass, body temperature, gross energy intake(GEI), digestible energy intake(DEI), body fat content, as well as length and mass of the digestive tract, were measured in Chinese Bulbuls(Pycnonotus sinensis) caught in the wild at Wenzhou, China.Methods: Body mass was determined with a Sartorius balance. The caloric contents of the dried food and feces were then determined using a oxygen bomb calorimeter. Total fat was extracted from the dried carcasses by ether extraction in a Soxhlet apparatus. The digestive tract of each bird was measured and weighed, and was then dried to a constant mass.Results: Body mass showed a significant seasonal variation and was higher in spring and winter than in summer and autumn. Body fat was higher in winter than in other seasons. GEI and DEI were significantly higher in winter.The length and mass of the digestive tract were greatest in winter and the magnitude of both these parameters was positively correlated with body mass, GEI and DEI. Small passerines typically have higher daily energy expenditure in winter, necessitating increased food consumption.Conclusions: This general observation is consistent with the observed winter increase in gut volume and body mass in Chinese Bulbuls. These results suggest that Chinese Bulbuls adjust to winter conditions by increasing their body mass, body fat, GEI, DEI and digestive tract size.
基金National Natural Science Foundation of China(31160426 30560023)the Projects of Science and Technology Office of Hunan (2011FJ3071)
文摘This study aimed to discuss the energy budget of Elliot's pheasant Syrmaticus ellioti in different seasons, with life and health, good growth and normal digestion of Elliot's pheasant as the tested objects, The energy budget of Elliot's pheasant was measured by daily collection of the trial pheasants' excrement in the biological garden of Guangxi Normal University from March 2011 to February 2012. The results showed that the gross energy consumption, metabolic energy and excrement energy varied by season, increasing as temperature decreased. There was significant difference in gross energy consumption, metabolic energy, excrement energy between adults and nonages. There was also a trend that food digestibility of pheasants increases as temperature increases. In the same season, the food digestibility of adults was better than that of nonages. Throughout spring, summer, autumn and winter, the metabolic energy of 4-year adults were 305.77±13.40 kJ/d, 263.67±11.89 kJ/d, 357.23±25.49 kJ/d and 403.12±24.91 kJ/d, respectively, and the nonages were 284.86±17.22 kJ/d, 284. 66±15.16 kJ/d, 402. 26±31.46 kJ/d and 420. 30±31.98 kJ/d, respectively. The minimum metabolic energies were 247.65±21.81 g, 265.86±26.53 g, respectively for each group, detected between 4-year adults and 1-year nonages. Further study is needed to determine whether 29.6 C is the optimal temperature for the Elliot's pheasant.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11020201the National Basic Research Program of China under contract No.2013CB956101+2 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences under con-tract No.SQ201302the National Science Foundation Council Grant of China under contract Nos 41430964,41406023 and 41025019the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams and General Research Fund of Hong Kong Research Grants Council under contract No.CUHK402912
文摘On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to Septem- ber. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 mW/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Nifio3.4 index are negatively correlated.
基金supported from the Science and technology planning project of colleges and universities in Shandong province:[Grant Number J16LH02]Scientific Research Project of the Introduced Talents in Ludong University:[Grant Number LB2016038]+2 种基金College Students' Scientific Innovation Project of Ludong University:[Grant Number131096]Natural scientific Foundation of Shandong Province:[Grant Number ZR2015DM005]Human and Social Science Project of Ministry of Education:[Grant Number 15YJAZH069]
文摘In order to understand the characteristics of spatial and temporal variation,as well as provide effective ideas on carbon emissions and regulatory policy in Yantai,this article analyzed spatial and temporal variation of carbon emissions in Yantai based on energy consumption statistics for a variety of energy sorts together with industrial sectors from 2001 to 2011.The results were as following:First of all,Yantai's carbon emissions grew by an average of 5.5%per year during the last 10 years,and there was a peak of 10.48 million carbon in the year of 2011.Second,compared with the gross domestic product(GDP) growth rate,the figures for energy carbon emissions growth rate were smaller;however the problem of carbon emissions were still more obvious.Furthermore,carbon emissions in Yantai increased rapidly before 2008;while after 2008,it increased more slowly and gradually become stable.Third,the energy consumption was different among regions in Yantai.For instance,the energy consumption in Longkou city was the largest,which occupied 50%of the total carbon emissions in Yantai;and the energy consumption in Chang Island was generally less than 1%of the Longkou consumption.Finally,there were relative close relationships among the spatial difference of carbon emissions,regional resources endowment,economic development,industrial structure,and energy efficiency.
文摘Energy has laid material foundation for human society during its development. Meanwhile, any change of price in the energy industry may influence social production and people’s life at all levels via an input-output mechanism under which the change related to energy is surely transmitted to other industries. The price change thus incurred in all industries may adversely affect the realization of macroeconomic objective-maintaining prices at a stable level. It is, therefore, needed to conduct an empirical research related to the impact of price change in energy industry on that in other industries. According to the data coming from “China’s 2015 Input-Output Extension Table (42 Departments)” and four hypothetical basis, this article focuses on four energy sectors and analyzes how deeply the price change of them, by use of input-output model, affects that of other industrial products under five conditions where each of their price rises by 10% individually or simultaneously, and why such an influence occurs. The results show that the price rising of the energies in question leads to an upward growth in the prices of other industrial products, especially when their prices go up simultaneously. Besides, the price increase in the four energy sectors doesn’t influence other industries in an accumulation form but actually leads to a rollback in some of other industries. It is recommended to adopt diversified pricing strategies for different energy products, thus maximizing the value of each specific energy, and meanwhile achieving the goals of energy consumption reduction and price equilibrium.
基金National Natural Science Foundation of China(3116042630560023)the Projects of Science and Technology Office of Hunan(2011FJ3071).
文摘This study aimed to discuss the energy budget of Elliot’s pheasant Syrmaticus ellioti in different seasons,with life and health,good growth and normal digestion of Elliot’s pheasant as the tested objects,The energy budget of Elliot’s pheasant was measured by daily collection of the trial pheasants’excrement in the biological garden of Guangxi Normal University from March 2011 to February 2012.The results showed that the gross energy consumption,metabolic energy and excrement energy varied by season,increasing as temperature decreased.There was significant difference in gross energy consumption,metabolic energy,excrement energy between adults and nonages.There was also a trend that food digestibility of pheasants increases as temperature increases.In the same season,the food digestibility of adults was better than that of nonages.Throughout spring,summer,autumn and winter,the metabolic energy of 4-year adults were 305.77±13.40 kJ/d,263.67±11.89 kJ/d,357.23±25.49 kJ/d and 403.12±24.91 kJ/d,respectively,and the nonages were 284.86±17.22 kJ/d,284.66±15.16 kJ/d,402.26±31.46 kJ/d and 420.30±31.98 kJ/d,respectively.The minimum metabolic energies were 247.65±21.81 g,265.86±26.53 g,respectively for each group,detected between 4-year adults and 1-year nonages.Further study is needed to determine whether 29.6 C is the optimal temperature for the Elliot’s pheasant.
基金Project(2021RC2011)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProjects(U1934207,52178180)supported by the National Natural Science Foundation of ChinaProject(2021M703648)supported by the China Postdoctoral Science Foundation。
文摘The track geometry is a critical factor that affects the running safety and riding comfort of trains moving on a high-speed railway bridge.This study addresses the mapping relationship between the track deformation and lateral deformations of bridges.Equilibrium equations and natural boundary conditions of the track-bridge system are established based on the energy variational principle,and an analytical solution is derived for the track deformation accounting for lateral bridge deformations.A five-span simply-supported bridge with continuous welded rail has been selected as the case study.The mapping rail deformations are compared to the finite element results,and both results agree well with each other,validating the analytical method proposed in this paper.The influence factors on the mapping rail deformation are further evaluated.Results show that the mapping rail deformation is consistent with the girder displacement at the area that is away from the girder ends when the flexural stiffness ratio between the track and the bridge girder is low.The interlayer stiffness has a significant effect on the mapping rail deformation when the track flexural stiffness is of a high value.
基金This project sponsored by the National Key Research and Development Program(2018YFC1503200)the National Natural Science Foundation(41474051)+1 种基金Xinjiang Project Aided by Institute of Earthquake Forecasting of China Earthquake Administration(2016IES0103)the Xinjiang Seismological Science Fund(201902)
文摘In order to study the seasonal variation of large volume airgun signals in Hutubi,Xinjiang,we analyzed 2,936 signals of airgun source excitations during 2015-2016 received by a seismograph on the bank of the excitation pool.Firstly,the RMS value of the signal amplitude and the daily average temperature were compared after linearly superimposing the signal in days,to analyze the influence of the surface ice cover on the excitation energy release of the airgun source.The result shows that the ice cover will reduce the excitation energy,and the thicker the ice cover is,the more obvious the excitation energy reduces.Secondly,the time-frequency analysis method was used to analyze the influence of the surface ice cover on the signal frequency.It is concluded that the existence of the ice cover has little effect on the signal frequency,but it will affect the intensity of the signal around 4 Hz between 1-2 s after excitation.The cause of these phenomena is that the ice cover affects the bubble oscillation,which in turn affects the energy conversion.The study shows that when using the cross-correlation delay method to calculate the wave velocity,the signals can be divided into two periods according to the daily average temperature:with or without ice cover on the upper surface of the excitation pool.This can help eliminate the influence of the source variation and improve the accuracy of the monitoring results.
文摘From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.
文摘In this paper, based on the finite deformation S-R decomposition theorem, the definition of the body moment is renewed as the stem of its internal and external. The expression of the increment rate of the deformation energy is derived and the physical meaning is clarified. The power variational principle and the complementary power variational principle for finite deformation mechanics are supplemented and perfected.
文摘Improvements in the aerodynamic design will lead to more efficiency of wind turbines and higher power production. In the present study, a 3D parametric gas turbine blade geometry building code, 3DBGB, has been modified in order to include wind turbine design capabilities. This approach enables greater flexibility of the design along with the ability to design more complex geometries with relative ease. The NREL NASA Phase VI wind turbine was considered as a test case for validation and as a baseline by which modified designs could be compared. The design parameters were translated into 3DBGB input to create a 3D model of the wind turbine which can also be imported into any CAD program. Design modifications included replacing the airfoil section and modifying the thickness to chord ratio as a function of span. These models were imported into a high-fidelity CFD package, Fine/TURBO by NUMECA. Fine/TURBO is a specialized CFD platform for turbo-machinery analysis. A code-geomturbo was used to convert the 3D model of the wind turbine into the native format used to define geometries in the Fine/TURBO meshing tool, AutoGrid. The CFD results were post processed using a 3D force analysis code. The radial force variations were found to play a measurable role in the performance of wind turbine blades. The radial component of the blade surface area as it varies in span is the dominant contributor of the radial forces. Through the radial momentum equation, this radial force variation is responsible for creating the streamline curvature that leads to the expansion of the streamtube (slipstream) that is responsible for slowing the wind velocity ahead of the wind turbine leading edge, which is quantified as the axial induction factor. These same radial forces also play a role in changing the slipstream for propellers. Through the design modifications, simulated with CFD and post-processed appropriately, this connection with the radial component of area to the radial forces to the axial induction factor, and finally the wind turbine power is demonstrated. The results from the CFD analysis and 3D force analysis are presented. For the case presented, the power increases by 5.6% due to changes in airfoil thickness only.
基金The National Key Research and Development Program of China under contract No.2016YFC0402603the Guangdong Provincial Department of Natural Resources Project under contract No.42090038the Guangdong Provincial Department of Ocean and Fisheries Project under contract No.42090033.
文摘Knowledge of sediment variation processes is essential to understand the evolution mechanism of beach morphology changes.Thus,a field measurement was conducted at the Heisha Beach,located on the west coast of the Zhujiang River(Pearl River)Estuary,to investigate the short-term variation in suspended sediment concentrations(SSCs)and the relationship between the SSC and turbulent kinetic energy,bottom shear stress(BSS),and relative wave height.Based on extreme event analysis results,extreme events have a greater influence on turbulent kinetic energy than SSC.Although a portion of the turbulent kinetic energy dissipates directly into the water column,it plays an important role in suspended sediment motion.Most of the time,the wave-current interaction is strong enough to drive sediment incipience and resuspension.When combined,the wave-current interaction and wave-induced BSSs have a greater influence on suspended sediment transport and SSC variation than current-induced BSS alone.The relative wave height also has a strong correlation with SSC,indicating that the combined effect of water depth and wave height significantly impacts SSC variation.Water depth is mainly controlled by the tide on the beaches;thus,the effects of tides and waves should be conjunctively considered when analyzing the factors influencing SSC.
文摘A snake algorithm has been known that it has a strong point in extracting the exact contour of an object. But it is apt to be influenced by scattered edges around the control points. Since the shape of a moving object in 2D image changes a lot due to its rotation and translation in the 3D space, the conventional algorithm that takes into account slowly moving objects cannot provide an appropriate solution. To utilize the advantages of the snake algorithm while minimizing the drawbacks, this paper proposes the area variation based color snake algorithm for moving object tracking. The proposed algorithm includes a new energy term which is used for preserving the shape of an object between two consecutive images. The proposed one can also segment precisely interesting objects on complex image since it is based on color information. Experiment results show that the proposed algorithm is very effective in various environments.
文摘Earth’s crust is an anisotropic and purely heterogeneous medium, which is justified by existence of different discontinuities;our study aims to show the effect of the variation of coefficient of friction on the evolution of temperature and its impact on seismic forecasting. In this work, we are model in 2D the variation of thermal energy and temperature produced by friction at the level of fault lip as function of depth of the seismic focus and at different value of time. Earthquakes are born when the energy accumulated by friction at the level of fault is suddenly released causing damage, sometimes noticeable on the surface of earth (macroseisms), and sometimes not at all noticeable on the surface of earth (microseisms), then energy which occurs before is important to forecasting earthquake. Assuming that coefficient of friction is variable, our results have enabled us to highlight the fact that, the greater the coefficient of friction, more the temperature increases, although the temperature profile increase over time but not linearly reflecting the presence of different asperities and discontinuities zone;slip generated at the level of fault occur a variation of temperature on specific points called roughness in common agreement with the literature. A large part of energy produced by friction is dissipated in heat causing a local increases in temperature which a very short duration and called flash contact temperature, and that despite the fact that the temperature evolved in time and space, it all converged towards a perfectly distinguishable fixed point.