The solvent extraction of copper from simulated ammoniacal spent etchant with 1-(4'-dodecyl)-phenyl-3-tertiary butyl-1,3-octadione(HR) was studied,and a model of extraction isotherm was proposed and verified with...The solvent extraction of copper from simulated ammoniacal spent etchant with 1-(4'-dodecyl)-phenyl-3-tertiary butyl-1,3-octadione(HR) was studied,and a model of extraction isotherm was proposed and verified with equilibrium extraction constant.The influence of equilibration time,extractant concentration and phase ratio on the extraction of copper was studied at(298±0.5) K.For the spent etching solutions containing 112.98 g/L Cu,6 mol/L NH3 and 1 mol/L NH4+,the optimal solvent extraction condition of copper was obtained in one-stage solvent extraction at phase ratio of 5:4 with 40% HR in sulphonated kerosene for 5 min.The copper concentration in the raffinate decreased to 63.24 g/L and raffinate can be favorably recycled to the etching solution.The stripping studies were carried out with the simulated copper spent electrolyte containing 30 g/L Cu and 180 g/L H2SO4.The stripping ratio is 98.27% from the loaded organic phase after one-stage stripping at phase ratio of 1:2 at(298±0.5) K.展开更多
Electrochemical technologies for the on-site treatment of spent acid etchant have received great attention due their ease of operation and economic benefits. On the other hand, a large amount of Cl2 is generated durin...Electrochemical technologies for the on-site treatment of spent acid etchant have received great attention due their ease of operation and economic benefits. On the other hand, a large amount of Cl2 is generated during the electrolysis process, which leads to potential environmental risks. In the present work, a novel threecompartment ceramic membrane flow reactor, including a cathode chamber, an anode chamber, and a gas absorption chamber was developed. The three chambers were divided by an Al2O3 ceramic membrane and a breathable hydrophobic anode diffusion electrode(ADE). The Cl2 evolution onset potential of the ADE was increased to 1.19 V from 1.05 V of the graphite felt, effectively inhibiting the chlorine evolution reaction(CER).The anode-generated Cl2 diffused into the gas absorption chamber through the ADE and was eventually consumed by the H2O2 adsorbent. Cu could be recovered without emitting chlorine due to the special structure of reactor. The current efficiency of copper precipitation and cathode reduction from Cu2+to Cu+reached 97.7%at a working current of 150 m A. These results indicated that the novel membrane reactor had high potential for application in the copper recovery industry.展开更多
Facts affect recovering copper from spent ammoniacal etchant by extraction using Lix 54-100 were analysised.Copper amount in spent etchant whose copper concentration reached 150g/l could decrease to the level of fresh...Facts affect recovering copper from spent ammoniacal etchant by extraction using Lix 54-100 were analysised.Copper amount in spent etchant whose copper concentration reached 150g/l could decrease to the level of fresh etchant in one or two stage,when phase ratio(O/A)was 2/1,and 80% Lix 54-100 was used as organic phase.展开更多
基金Project (2007CB613601) supported by the National Basic Research Program of China
文摘The solvent extraction of copper from simulated ammoniacal spent etchant with 1-(4'-dodecyl)-phenyl-3-tertiary butyl-1,3-octadione(HR) was studied,and a model of extraction isotherm was proposed and verified with equilibrium extraction constant.The influence of equilibration time,extractant concentration and phase ratio on the extraction of copper was studied at(298±0.5) K.For the spent etching solutions containing 112.98 g/L Cu,6 mol/L NH3 and 1 mol/L NH4+,the optimal solvent extraction condition of copper was obtained in one-stage solvent extraction at phase ratio of 5:4 with 40% HR in sulphonated kerosene for 5 min.The copper concentration in the raffinate decreased to 63.24 g/L and raffinate can be favorably recycled to the etching solution.The stripping studies were carried out with the simulated copper spent electrolyte containing 30 g/L Cu and 180 g/L H2SO4.The stripping ratio is 98.27% from the loaded organic phase after one-stage stripping at phase ratio of 1:2 at(298±0.5) K.
基金Supported by the National Natural Science Foundation of China(21838005,21676139)the Higher Education Natural Science Foundation of Jiangsu Province(15KJA530001)+1 种基金the Key Scientific Research and Development Projects of Jiangsu Province(BE201800901)Research Fund of State Key Laboratory of MaterialsOriented Chemical Engineering(ZK201604).
文摘Electrochemical technologies for the on-site treatment of spent acid etchant have received great attention due their ease of operation and economic benefits. On the other hand, a large amount of Cl2 is generated during the electrolysis process, which leads to potential environmental risks. In the present work, a novel threecompartment ceramic membrane flow reactor, including a cathode chamber, an anode chamber, and a gas absorption chamber was developed. The three chambers were divided by an Al2O3 ceramic membrane and a breathable hydrophobic anode diffusion electrode(ADE). The Cl2 evolution onset potential of the ADE was increased to 1.19 V from 1.05 V of the graphite felt, effectively inhibiting the chlorine evolution reaction(CER).The anode-generated Cl2 diffused into the gas absorption chamber through the ADE and was eventually consumed by the H2O2 adsorbent. Cu could be recovered without emitting chlorine due to the special structure of reactor. The current efficiency of copper precipitation and cathode reduction from Cu2+to Cu+reached 97.7%at a working current of 150 m A. These results indicated that the novel membrane reactor had high potential for application in the copper recovery industry.
文摘Facts affect recovering copper from spent ammoniacal etchant by extraction using Lix 54-100 were analysised.Copper amount in spent etchant whose copper concentration reached 150g/l could decrease to the level of fresh etchant in one or two stage,when phase ratio(O/A)was 2/1,and 80% Lix 54-100 was used as organic phase.