Based on theorems, the Atomic AString Functions theory, evolving since the 1970s, is introduced into Quantum Mechanics to represent a wave function via the shifts and stretches of smooth finite Atomic Function pulses/...Based on theorems, the Atomic AString Functions theory, evolving since the 1970s, is introduced into Quantum Mechanics to represent a wave function via the shifts and stretches of smooth finite Atomic Function pulses/solitonic atoms. It leads to a novel ‘atomic interpretation’ where wave functions become the superpositions of localized Atomic Wave Functions, which can also describe collapsed wave functions, represent Gaussians, uphold Heisenberg’s uncertainly principle, and a more generic concept of Atomic Harmonic Oscillator. Atomic Functions can solve the boundary wave function discontinuity problem for particle-in-a-box and other solutions by introducing atomic wave packets. It highlights some limitations of the Schrödinger equation, yielding harmonic representations that may not be flexible enough to satisfy complex boundary conditions. The theory follows more generic research on Atomic Spacetime, quantum gravity, and field theories to derive common mathematical blocks of unified fields similar to loop quantum gravity and strings theories.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,in...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between sing...Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO_(2)sensing.We found that the single Pt sites on the MoS_(2)surface can induce easier volatiliza-tion of adjacent S species to activate the whole inert S plane.Reversely,the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms,thus creating a combined system involving S vacancy-assisted single Pt sites(Pt-Vs)to synergistically improve the adsorption ability of SO_(2)gas molecules.Further-more,in situ Raman,ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS_(2)supports in SO_(2)gas atmosphere.Equipped with wireless-sensing modules,the final Pt1-MoS_(2)-def sensors array can further realize real-time monitoring of SO_(2)levels and cloud-data storage for plant growth.Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.展开更多
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ...Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.展开更多
Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construc...Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions.展开更多
Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can...Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production.展开更多
The early stage evolution of local atomic structures in a multicomponent metallic glass during its crystallization process has been investigated via molecular dynamics simulation.It is found that the initial thermal s...The early stage evolution of local atomic structures in a multicomponent metallic glass during its crystallization process has been investigated via molecular dynamics simulation.It is found that the initial thermal stability and earliest stage evolution of the local atomic clusters show no strong correlation with their initial short-range orders,and this leads to an observation of a novel symmetry convergence phenomenon,which can be understood as an atomic structure manifestation of the ergodicity.Furthermore,in our system we have quantitatively proved that the crucial factor for the thermal stability against crystallization exhibited by the metallic glass is not the total amount of icosahedral clusters,but the degree of global connectivity among them.展开更多
The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors,and impacts on overall capability of Rydberg sensors.However,the conventional analysis approach on effect of vapor-cell length contains t...The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors,and impacts on overall capability of Rydberg sensors.However,the conventional analysis approach on effect of vapor-cell length contains two implicit assumptions,that is,the same atomic population density and buffer gas pressure,which make it unable to accurately capture actual response about effect of Rydberg-atom-based sensor performance on different Rydberg atom populations.Here,utilizing a stepped cesium atomic-vapor cell with five different dimensions at the same atomic population density and buffer gas pressure,the height and full width at half maximum of electromagnetically induced transparency(EIT)signal,and the sensitivity of the atomic superheterodyne sensor are comprehensively investigated under conditions of the same Rabi frequencies(saturated laser power).It is identified that EIT signal height is proportional to the cell length,full width at half maximum and sensitivity grow with the increment of cell length to a certain extent.Employing the coherent integration signal theory and atomic linear expansion coefficient method,theoretical analysis of the EIT height and sensitivity are further investigated.The results could shed new light on understanding and design of ultrahigh-sensitivity Rydberg atomic microwave sensors and find promising applications in quantum measurement,communication,and imaging.展开更多
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult...Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery.展开更多
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav...Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.展开更多
The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)...The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)fabricated ultrathin Al_(2)O_(3)layers are applied to modify the ETLs/active blends(PM6:BTP-BO-4F)interfaces of OSCs,thus improving device performance.The ALD-Al_(2)O_(3)thin layers on ZnO significantly improved its surface morphology,which led to the decreased work function of ZnO and reduced recombination losses in devices.The simultaneous increase in open-circuit voltage(V_(OC)),short-circuit current density(J_(SC))and fill factor(FF)were achieved for the OSCs incorporated with ALD-Al_(2)O_(3)interlayers of a certain thickness,which produced a maximum PCE of 16.61%.Moreover,the ALD-Al_(2)O_(3)interlayers had significantly enhanced device stability by suppressing degradation of the photoactive layers induced by the photocatalytic activity of ZnO and passivating surface defects of ZnO that may play the role of active sites for the adsorption of oxygen and moisture.展开更多
In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for th...In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment.展开更多
We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin st...We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K.展开更多
We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditio...We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped(FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1 Hz–30 Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers.展开更多
Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of ...Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of Zn metal anodes(ZMAs)severely restrict their applications.To address these issues,we design the asymmetric Zn-N_(4) atomic sites embedded hollow fibers(AS-IHF)as the flexible host for stable ZMAs.Through introducing different nitrogen resources in the synthesis,two kinds of coordination,i,e.Zn-N(pyridinic)and Zn-N(pyrrolic),are introduced in the Zn-N_(4) atomic module synchronously.The asymmetric Zn-N_(4) module with regulated micro-environment facilitates the superior zincophilic features and promotes the Zn adsorption.Meanwhile,the highly porous structure of the hollow fiber effectively reduces local current density,homogenize Zn ion flux,and alleviate structure stress.All the advantages endow the high efficiency and good stability for Zn plating/stripping.Both theoretical and experimental results demonstrate the high reversibility,low nucleation overpotential,and dendritefree behavior of the AS-IHF@Zn anode,which afford the high stability in high-rate and long-term cycling.Moreover,the solid-state Zn-ion hybrid capacitor(ZIHC)based on AS-IHF@Zn anode shows the high flexibility,reliability,and superior long-term cycling capability in a wide-range of temperatures(-20-25℃).Therefore,the present work not only gives a new strategy for modulating local environments of single atomic sites,but also propels the development of flexible power sources for diverse electronics.展开更多
Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions.A new avenue for understanding the dynamic behavior of atomic migration in which hydroge...Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions.A new avenue for understanding the dynamic behavior of atomic migration in which hydrogen atoms moving on a catalyst surface was opened up by the setup of the word"hydrogen spillover."However,there is currently a dearth of thorough knowledge regarding the hydrogen spillover effect.Currently,the advancement of sophisticated characterization procedures offers progressively useful information to enhance our grasp of the hydrogen spillover effect.The understanding of material fabrication for hydrogen spillover effect has erupted.Considering these factors,we made an effort to review most of the articles published on the hydrogen spillover effect and carefully analyzed the aspect of material fabrication.All of our attention has been directed toward the molecular pathway that leads to improve hydrogen evolution reactions performance.In addition,we have attempted to elucidate the spillover paths through the utilization of DFT calculations.Furthermore,we provide some preliminary research suggestions and highlight the opportunities and obstacles that are still to be confronted in this study area.展开更多
Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is report...Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively.展开更多
文摘Based on theorems, the Atomic AString Functions theory, evolving since the 1970s, is introduced into Quantum Mechanics to represent a wave function via the shifts and stretches of smooth finite Atomic Function pulses/solitonic atoms. It leads to a novel ‘atomic interpretation’ where wave functions become the superpositions of localized Atomic Wave Functions, which can also describe collapsed wave functions, represent Gaussians, uphold Heisenberg’s uncertainly principle, and a more generic concept of Atomic Harmonic Oscillator. Atomic Functions can solve the boundary wave function discontinuity problem for particle-in-a-box and other solutions by introducing atomic wave packets. It highlights some limitations of the Schrödinger equation, yielding harmonic representations that may not be flexible enough to satisfy complex boundary conditions. The theory follows more generic research on Atomic Spacetime, quantum gravity, and field theories to derive common mathematical blocks of unified fields similar to loop quantum gravity and strings theories.
基金the National Natural Science Foundation of China(22279044,12034002,and 22202080)the Project for Self-Innovation Capability Construction of Jilin Province Development and Reform Commission(2021C026)+1 种基金Jilin Province Science and Technology Development Program(20210301009GX)the Fundamental Research Funds for the Central Universities.
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金This work was supported by the National Natural Science Foundation of China(62271299)Shanghai Sailing Program(22YF1413400).Shanghai Engineering Research Center for We thank the Integrated Circuits and Advanced Display Materials.
文摘Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO_(2)sensing.We found that the single Pt sites on the MoS_(2)surface can induce easier volatiliza-tion of adjacent S species to activate the whole inert S plane.Reversely,the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms,thus creating a combined system involving S vacancy-assisted single Pt sites(Pt-Vs)to synergistically improve the adsorption ability of SO_(2)gas molecules.Further-more,in situ Raman,ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS_(2)supports in SO_(2)gas atmosphere.Equipped with wireless-sensing modules,the final Pt1-MoS_(2)-def sensors array can further realize real-time monitoring of SO_(2)levels and cloud-data storage for plant growth.Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.
基金supported by the National Natural Science Foundation of China(51835005,52273237)the National Key R&D Program of China(2022YFF1500400)。
文摘Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.
基金National Research Foundation of Korea,Grant/Award Numbers:NRF‐2019M3D1A1079303,NRF‐2021R1A2C1011415,NRF‐2021R1A2C3004019。
文摘Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions.
基金financial support from National Natural Science Foundation of China(22125202,21932004,22101128)Natural Science Foundation of Jiangsu Province(BK20220033)。
文摘Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52031016 and 11804027)the China Scholarship Council for financial support during part of this work
文摘The early stage evolution of local atomic structures in a multicomponent metallic glass during its crystallization process has been investigated via molecular dynamics simulation.It is found that the initial thermal stability and earliest stage evolution of the local atomic clusters show no strong correlation with their initial short-range orders,and this leads to an observation of a novel symmetry convergence phenomenon,which can be understood as an atomic structure manifestation of the ergodicity.Furthermore,in our system we have quantitatively proved that the crucial factor for the thermal stability against crystallization exhibited by the metallic glass is not the total amount of icosahedral clusters,but the degree of global connectivity among them.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61901495 and 12104509)
文摘The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors,and impacts on overall capability of Rydberg sensors.However,the conventional analysis approach on effect of vapor-cell length contains two implicit assumptions,that is,the same atomic population density and buffer gas pressure,which make it unable to accurately capture actual response about effect of Rydberg-atom-based sensor performance on different Rydberg atom populations.Here,utilizing a stepped cesium atomic-vapor cell with five different dimensions at the same atomic population density and buffer gas pressure,the height and full width at half maximum of electromagnetically induced transparency(EIT)signal,and the sensitivity of the atomic superheterodyne sensor are comprehensively investigated under conditions of the same Rabi frequencies(saturated laser power).It is identified that EIT signal height is proportional to the cell length,full width at half maximum and sensitivity grow with the increment of cell length to a certain extent.Employing the coherent integration signal theory and atomic linear expansion coefficient method,theoretical analysis of the EIT height and sensitivity are further investigated.The results could shed new light on understanding and design of ultrahigh-sensitivity Rydberg atomic microwave sensors and find promising applications in quantum measurement,communication,and imaging.
基金This work was supported by National Key R&D Program of China(2021YFF0500503)National Natural Science Foundation of China(21925202,U22B2071)International Joint Mission on Climate Change and Carbon Neutrality.
文摘Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery.
基金This work was supported by National Key R&D Program of China(2021YFF1200200)Peiyang Talents Project of Tianjin University.
文摘Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
基金financial support from National Natural Science Foundation of China(No.21875106,21850410456,21875052,51972172)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB36000000)Jiangsu Excellent Postdoctoral Program
文摘The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)fabricated ultrathin Al_(2)O_(3)layers are applied to modify the ETLs/active blends(PM6:BTP-BO-4F)interfaces of OSCs,thus improving device performance.The ALD-Al_(2)O_(3)thin layers on ZnO significantly improved its surface morphology,which led to the decreased work function of ZnO and reduced recombination losses in devices.The simultaneous increase in open-circuit voltage(V_(OC)),short-circuit current density(J_(SC))and fill factor(FF)were achieved for the OSCs incorporated with ALD-Al_(2)O_(3)interlayers of a certain thickness,which produced a maximum PCE of 16.61%.Moreover,the ALD-Al_(2)O_(3)interlayers had significantly enhanced device stability by suppressing degradation of the photoactive layers induced by the photocatalytic activity of ZnO and passivating surface defects of ZnO that may play the role of active sites for the adsorption of oxygen and moisture.
基金funded in part by the National Key R&D Program of China(Grant No.2022YFB3606900)in part by the National Natural Science of China(Grant No.62004217)。
文摘In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment.
基金supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003)the National Natural Science Foundation of China (Grant Nos. 12034011, U23A6004, 12374245,12322409, 92065108, 11974224, and 12022406)+1 种基金the National Key Research and Development Program of China (Grant Nos. 2022YFA1404101 and 2021YFA1401700)the Fund for Shanxi 1331 Project Key Subjects Construction。
文摘We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62303029)the China Postdoctoral Science Foundation (Grant No. 2022M720364)the Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0300500 and 2021ZD0300503)。
文摘We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped(FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1 Hz–30 Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers.
基金supported by the Innovation Foundation of Graduate Student of Harbin Normal University (No.HSDBSCX2023-3),China。
文摘Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of Zn metal anodes(ZMAs)severely restrict their applications.To address these issues,we design the asymmetric Zn-N_(4) atomic sites embedded hollow fibers(AS-IHF)as the flexible host for stable ZMAs.Through introducing different nitrogen resources in the synthesis,two kinds of coordination,i,e.Zn-N(pyridinic)and Zn-N(pyrrolic),are introduced in the Zn-N_(4) atomic module synchronously.The asymmetric Zn-N_(4) module with regulated micro-environment facilitates the superior zincophilic features and promotes the Zn adsorption.Meanwhile,the highly porous structure of the hollow fiber effectively reduces local current density,homogenize Zn ion flux,and alleviate structure stress.All the advantages endow the high efficiency and good stability for Zn plating/stripping.Both theoretical and experimental results demonstrate the high reversibility,low nucleation overpotential,and dendritefree behavior of the AS-IHF@Zn anode,which afford the high stability in high-rate and long-term cycling.Moreover,the solid-state Zn-ion hybrid capacitor(ZIHC)based on AS-IHF@Zn anode shows the high flexibility,reliability,and superior long-term cycling capability in a wide-range of temperatures(-20-25℃).Therefore,the present work not only gives a new strategy for modulating local environments of single atomic sites,but also propels the development of flexible power sources for diverse electronics.
基金supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(Grant Nos.RS-2023-00284361 and 2021R1A2C2091497)supported by the Nano&Materials Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(RS-2024-00436563)
文摘Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions.A new avenue for understanding the dynamic behavior of atomic migration in which hydrogen atoms moving on a catalyst surface was opened up by the setup of the word"hydrogen spillover."However,there is currently a dearth of thorough knowledge regarding the hydrogen spillover effect.Currently,the advancement of sophisticated characterization procedures offers progressively useful information to enhance our grasp of the hydrogen spillover effect.The understanding of material fabrication for hydrogen spillover effect has erupted.Considering these factors,we made an effort to review most of the articles published on the hydrogen spillover effect and carefully analyzed the aspect of material fabrication.All of our attention has been directed toward the molecular pathway that leads to improve hydrogen evolution reactions performance.In addition,we have attempted to elucidate the spillover paths through the utilization of DFT calculations.Furthermore,we provide some preliminary research suggestions and highlight the opportunities and obstacles that are still to be confronted in this study area.
基金financially supported by National Natural Science Foundation of China (Nos. 12075032 and 12105021)Beijing Municipal Natural Science Foundation (Nos.8222055 and 2232061)+1 种基金Yunnan Police College Project (No. YJKF002)Beijing Institute of Graphic Communication Project (No. Ec202207)。
文摘Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively.