期刊文献+
共找到600篇文章
< 1 2 30 >
每页显示 20 50 100
Crushing Mechanism of Spherical Tungsten Alloy Fragments Penetrate Thick Steel Plate Target
1
作者 WAN Mingming BAI Rong +3 位作者 SHANG Zaifei WANG Yanli LIANG Jiayi LI Xue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期445-450,共6页
Against protection requirements for high-speed fragments on the ground weapons,we carried out the research work of crushing mechanism at different impact speeds ofφ8.7 mm spherical tungsten alloy,the penetration to 6... Against protection requirements for high-speed fragments on the ground weapons,we carried out the research work of crushing mechanism at different impact speeds ofφ8.7 mm spherical tungsten alloy,the penetration to 603 armor steel was completed by 20 mm ballistic gun,and the ANSYS/LS-DYNA software was used to complete the numerical calculation of the penetration.We find that there are different crushing mechanisms of spherical tungsten alloy with different speeds and low speed,the crushing mechanism of fragment is mainly controlled by overall plastic deformation,shearing stripping,and squeezing at a high pressure and a high speed.The crushing mechanism will have a spallation phenomenon in addition to the crushing mechanism under high pressure. 展开更多
关键词 spherical tungsten alloy experimental research numerical simulation crushing mechanism high pressure affected zone spallation zone
下载PDF
DYNAMICS ANALYSIS OF 2-DOF SPHERICAL PARALLEL MECHANISM 被引量:2
2
作者 李成刚 王化明 朱剑英 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期95-100,共6页
The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and recip... The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and reciprocal product of the screw, the equation of the motor moment is obtained. Through the transformation of dynamics model, the configuration space method of the dynamics equation and the corresponding coefficients are presented. Finally, the result of an example shows that the inertia moment and the gravity play a more important role than the coriolis and centrifugal moment, and the former is ten times of the latter in the magnitude. So, the latter can be neglected only when the velocity of mechanism is very slow. 展开更多
关键词 KINEMATICS mechanICS dynamics analysis screw theory spherical parallel mechanism
下载PDF
Biomimetic Shoulder Complex Based on 3-PSS/S Spherical Parallel Mechanism 被引量:23
3
作者 HOU Yulei HU Xinzhe +1 位作者 ZENG Daxing ZHOU Yulin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期29-37,共9页
The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism complete... The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism completely, also failed to solve the problem, such as small workspace, effectively. From the structural and functional bionic point of view, a three degrees of freedom(DOFs) spherical parallel mechanism for the shoulder complex of the humanoid robot is presented. According to the structure and kinetic characteristics analysis of the human shoulder complex, 3-PSS/S(P for prismatic pair, S for spherical pair) is chosen as the original configuration for the shouder complex. Using genetic algorithm, the optimization of the 3-PSS/S spherical parallel mechanism is performed, and the orientation workspace of the prototype mechanism is enlarged obviously. Combining the practical structure characteristics of the human shouder complex, an offset output mode, which means the output rod of the mechanism turn to any direction at the point a certain distance from the rotation center of the mechanism, is put forward, which provide possibility for the consistent of the workspace of the mechanism and the actual motion space of the human body shoulder joint. The relationship of the attitude angles between different coordinate system is derived, which establishs the foundation for the motion descriptions under different conditions and control development. The 3-PSS/S spherical parallel mechanism is proposed for the shoulder complex, and the consistence of the workspace of the mechanism and the human shoulder complex is realized by the stuctural parameter optimization and the offset output design. 展开更多
关键词 shoulder complex biomimetics spherical parallel mechanism
下载PDF
Theory of Degrees of Freedom for Parallel Mechanisms with Three Spherical Joints and Its Applications 被引量:3
4
作者 QU Haibo FANG Yuefa GUO Sheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期737-746,共10页
The analysis of degrees of freedom(DOF) of a moving platform is the fundamental problem in kinematics of parallel mechanism. However, many problems should be considered to correctly perform the DOF calculation by us... The analysis of degrees of freedom(DOF) of a moving platform is the fundamental problem in kinematics of parallel mechanism. However, many problems should be considered to correctly perform the DOF calculation by using the traditional DOF criterion, and it is difficult to find a DOF criterion suitable for all kinds of mechanisms. A rule that can be used to determine the position and orientation of the moving platform is presented. Based on the proposed rule, a new form of DOF criterion is proposed, which is suitable for a class of parallel mechanisms with three spherical joints attached to the moving platform. The basic types of generalized limb structures are given based on the possible dimension of achieving the center of spherical joint attached to the moving platform, and the general steps of analyzing the DOF are presented. This proposed formula simplifies the DOF analysis of parallel mechanisms with spherical joints attached to the moving platform, and plays an important role in structural synthesis of such parallel mechanisms. 展开更多
关键词 parallel mechanism DOF criterion spherical joint structural synthesis
下载PDF
Kinematic Solution of Spherical Stephenson-Ⅲ Six-bar Mechanism 被引量:3
5
作者 LIU Yanfang YANG Suixian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期851-860,共10页
A closed-form solution can be obtained for kinematic analysis of spatial mechanisms by using analytical method.However,extra solutions would occur when solving the constraint equations of mechanism kinematics unless t... A closed-form solution can be obtained for kinematic analysis of spatial mechanisms by using analytical method.However,extra solutions would occur when solving the constraint equations of mechanism kinematics unless the constraint equations are established with a proper method and the solving approach is appropriate.In order to obtain a kinematic solution of the spherical Stephenson-III six-bar mechanism,spherical analytical theory is employed to construct the constraint equations.Firstly,the mechanism is divided into a four-bar loop and a two-bar unit.On the basis of the decomposition,vectors of the mechanism nodes are derived according to spherical analytical theory and the principle of coordinate transformation.Secondly,the structural constraint equations are constructed by applying cosine formula of spherical triangles to the top platform of the mechanism.Thirdly,the constraint equations are solved by using Bezout’ s elimination method for forward analysis and Sylvester’ s resultant elimination method for inverse kinematics respectively.By the aid of computer symbolic systems,Mathematica and Maple,symbolic closed-form solution of forward and inverse displacement analysis of spherical Stephenson-III six-bar mechanism are obtained.Finally,numerical examples of forward and inverse analysis are presented to illustrate the proposed approach.The results indicate that the constraint equations established with the proposed method are much simpler than those reported by previous literature,and can be readily eliminated and solved. 展开更多
关键词 spherical Stephenson-III six-bar mechanisms kinematic analysis spherical analytical theory Bezout' s elimination method Sylvester' s elimination method
下载PDF
MECHANISM DESIGN AND MOTION ANALYSIS OF A SPHERICAL MOBILE ROBOT 被引量:17
6
作者 Zhan Qiang Jia Chuan +1 位作者 Ma Xiaohui Zhai Yutao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期542-545,共4页
A new spherical mobile robot BHQ-1 is designed. The spherical robot is driven by two internally mounted motors that induce the ball to move straight and turn around on a fiat surface. A dynamic model of the robot is d... A new spherical mobile robot BHQ-1 is designed. The spherical robot is driven by two internally mounted motors that induce the ball to move straight and turn around on a fiat surface. A dynamic model of the robot is developed with Lagrange method and factors affecting the driving torque of two motors are analyzed. The relationship between the turning radius of the robot and the length of two links is discussed in order to optimize its mechanism design. Simulation and experimental results demonstrate the good controllability and motion performance of BHQ-1. 展开更多
关键词 spherical mobile robot mechanism design Motion analysis
下载PDF
Dynamic modelling and properties analysis of 3RSR parallel mechanism considering spherical joint clearance and wear 被引量:5
7
作者 HOU Yu-lei DENG Yun-jiao ZENG Da-xing 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期712-727,共16页
The collision and wear caused by inevitable clearance in kinematic pair have an effect on the dynamic characteristics of the mechanism.Therefore,we established the dynamic model of a 3RSR(R is the revolute joint and S... The collision and wear caused by inevitable clearance in kinematic pair have an effect on the dynamic characteristics of the mechanism.Therefore,we established the dynamic model of a 3RSR(R is the revolute joint and S is the spherical joint)parallel mechanism with spherical joint clearance based on the modified Flores contact force model and the modified Coulomb friction model using Newton-Euler method.The standard quaternion was introduced in the constraint equation,and the four-order Runge-Kutta method was adopted to solve the 3RSR dynamic model.The simulation results were compared and analyzed with the numerical results.The geometrical parameters of the worn ball socket were solved based on the Archard wear model,and the geometrical reconstruction of the worn surface was carried out.The geometric reconstruction parameters were substituted into the dynamic model,which was to analyze the dynamic response of the 3RSR parallel mechanism with wear and spherical joint clearance.The simulation results show that the irregular wear occurs in the spherical joint with clearance under the presence of the impact and friction force.The long-term wear will increase the fluctuation of the contact force,thereby decreasing the movement stability of the mechanism. 展开更多
关键词 parallel mechanism DYNAMICS spherical joint clearance WEAR Newton-Euler method
下载PDF
Template growth mechanism of spherical Ni(OH)_2 被引量:3
8
作者 彭美勋 沈湘黔 《Journal of Central South University of Technology》 EI 2007年第3期310-314,共5页
The microstructures and growth process characteristics precipitation-crystallization method were investigated by SEM, TEM of spherical Ni(OH)2 particles synthesized by the aqueous and XRD, and their growth mechanism... The microstructures and growth process characteristics precipitation-crystallization method were investigated by SEM, TEM of spherical Ni(OH)2 particles synthesized by the aqueous and XRD, and their growth mechanism was discussed. With the reaction beginning and continuing, amorphous Ni(OH)2 nano-crystallites grow up to spherical micron-particles with radially arranged crystallites. The nucleation, crystallization and re-crystallization led by Ostwald ripening simultaneously take place through the whole growth processes. With the course from reversible aggregation to irreversible agglomeration, the Ni(OH)2 particles tend to grow according to the template growth model: the growth on the crystallite templates stretching in the radius directions is free and quick, while the growth rate for crystallites in other directions is confined due to lower monomers concentration and tends to dissolve So it is only the radially arranged crystallites that predominate in the particle and lead to characteristic microstructures. 展开更多
关键词 spherical Ni(OH)2: microstructure Ostwald ripening growth mechanism CRYSTALLIZATION
下载PDF
Approximate Solution of Non-Linear Reaction Diffusion Equations in Homogeneous Processes Coupled to Electrode Reactions for CE Mechanism at a Spherical Electrode 被引量:2
9
作者 A. Eswari S. Usha L. Rajendran 《American Journal of Analytical Chemistry》 2011年第2期93-103,共11页
A mathematical model of CE reaction schemes under first or pseudo-first order conditions with different diffusion coefficients at a spherical electrode under non-steady-state conditions is described. The model is base... A mathematical model of CE reaction schemes under first or pseudo-first order conditions with different diffusion coefficients at a spherical electrode under non-steady-state conditions is described. The model is based on non-stationary diffusion equation containing a non-linear reaction term. This paper presents the complex numerical method (Homotopy perturbation method) to solve the system of non-linear differential equation that describes the homogeneous processes coupled to electrode reaction. In this paper the approximate analytical expressions of the non-steady-state concentrations and current at spherical electrodes for homogeneous reactions mechanisms are derived for all values of the reaction diffusion parameters. These approximate results are compared with the available analytical results and are found to be in good agreement. 展开更多
关键词 NON-LINEAR Reaction/Diffusion Equation HOMOTOPY PERTURBATION Method CE mechanism Reduction of Order spherical ELECTRODES
下载PDF
Growth mechanisms for spherical Ni_(0.815)Co_(0.15)Al_(0.035)(OH)_(2) precursors prepared via the ammonia complexation precipitation method 被引量:4
10
作者 Xi Yang Xuesong Huang +4 位作者 Hancheng Shi Peng Dong Ding Wang Jianguo Duan Yingjie Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期379-386,I0013,共9页
The microstructures of precursors strongly affect the electrochemical performance of Ni-rich layerstructured cathode materials.In this study,the growth behaviour of Ni_(0.815)Co_(0.15)Al_(0.035)(OH)_2(NCA) prepared vi... The microstructures of precursors strongly affect the electrochemical performance of Ni-rich layerstructured cathode materials.In this study,the growth behaviour of Ni_(0.815)Co_(0.15)Al_(0.035)(OH)_2(NCA) prepared via the ammonia complexation precipitation method in a 50-L-volume continuously stirred tank reactor(CSTR) is studied in detail.The growth of Ni(OH)2-based hydroxide can be divided into a nucleation process,an agglomeration growth process,a process in which multiple growth mechanisms coexist,and an interface growth process over time,while the inner structure of the CSTR can be divided into a nucleation zone,a complex dissolution zone,a growth zone,and a maturation zone.The concentration of ammonium ions affects the growth habit of the primary crystal significantly due to its specific adsorption on the electronegative crystal plane.When the ammonia concentration is <1.5 mol L^(-1) at 60℃ at pH=11.5,the precursors grow preferentially along the(1 0 1) crystal plane,whereas they grow preferentially along the(0 0 1) crystal plane when the concentration is >2.0 mol L^(-1).The LiNi_(0.815)Co_(0.15)Al_(0.035)O_2 materials inherit the grain structure of the precursor.Materials prepared from precursors with(1 0 1)preferential primary particles show a higher specific capacity and better rate performance than those that were prepared from(0 0 1) preferential primary particles,but the latter realize a better cycling performance than the former. 展开更多
关键词 Lithium ion batteries Growth mechanism spherical agglomerates Mixed hydroxide LiNi_(0.815)Co_(0.15)Al_(0.035)O_(2)
下载PDF
Dynamic Modeling and Analysis of 4UPS-UPU Spatial Parallel Mechanism with Spherical Clearance Joint 被引量:2
11
作者 Xiulong Chen Mengqiang Cui 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第3期61-78,共18页
Clearance between the moving joints is unavoidable in real working process. At present, many researches are mainly focused on dynamics of plane revolute joint in plane mechanism, but few on dynamics of spatial spheric... Clearance between the moving joints is unavoidable in real working process. At present, many researches are mainly focused on dynamics of plane revolute joint in plane mechanism, but few on dynamics of spatial spherical joint clearance in spatial parallel mechanism. In this paper, a general method is proposed for establishing dynamic equations of spatial parallel mechanism with spatial spherical clearance by Lagrange multiplier method. The kinematic model and contact force model of the spherical joint clearance were established successively. Lagrange multiplier method was used to deduce the dynamics equation of 4 UPS-UPU mechanism with spherical clearance joint systematically. The influence of friction coefficient on dynamics response of 4 UPS-UPU mechanism with spherical clearance joint was analyzed. Non-linear characteristics of clearance joint and moving platform were analyzed by Poincare map, phase diagram, and bifurcation diagram. The results show that variation of friction coefficient and clearance value had little effect on stability of the mechanism, but the chaotic phenomenon was found at spherical clearance joint. The research has theoretical guiding significance for improving the dynamic performance and avoiding of chaos of parallel mechanisms including spherical joint clearance. 展开更多
关键词 spatial parallel mechanisms spherical joint clearance dynamic modeling dynamic analysis
下载PDF
Motion Characteristics Analysis of a Novel Spherical Two-degree-of-freedom Parallel Mechanism 被引量:1
12
作者 Ziming Chen Xuechan Chen +3 位作者 Min Gao Chen Zhao Kun Zhao Yanwen Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第2期91-99,共9页
Current research on spherical parallel mechanisms(SPMs)mainly focus on surgical robots,exoskeleton robots,entertainment equipment,and other fields.However,compared with the SPM,the structure types and research content... Current research on spherical parallel mechanisms(SPMs)mainly focus on surgical robots,exoskeleton robots,entertainment equipment,and other fields.However,compared with the SPM,the structure types and research contents of the SPM are not abundant enough.In this paper,a novel two-degree-of-freedom(2DOF)SPM with symmetrical structure is proposed and analyzed.First,the models of forward kinematics and inverse kinematics are established based on D-H parameters,and the Jacobian matrix of the mechanism is obtained and verified.Second,the workspace of the mechanism is obtained according to inverse kinematics and link interference conditions.Next,rotational characteristics analysis shows that the end effector can achieve continuous rotation about an axis located in the mid-plane and passing through the rotation center of the mechanism.Moreover,the rotational characteristics of the mechanism are proved,and motion planning is carried out.A numerical example is given to verify the kinematics analysis and motion planning.Finally,some variant mechanisms can be synthesized.This work lays the foundation for the motion control and practical application of this 2DOF SPM. 展开更多
关键词 spherical parallel mechanism 2DOF WORKSPACE Equivalent rotation
下载PDF
Support and Positioning Mechanism of a Detection Robot inside a Spherical Tank 被引量:1
13
作者 Chunlei Tu Shanshan Jin +2 位作者 Kai Zheng Xingsong Wang Sichong Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第1期241-250,共10页
Large pressure equipment needs to be tested regularly to ensure safe operation;wall-climbing robots can carry the necessary tools to inspect spherical tanks,such as cameras and non-destructive testing equipment.Howeve... Large pressure equipment needs to be tested regularly to ensure safe operation;wall-climbing robots can carry the necessary tools to inspect spherical tanks,such as cameras and non-destructive testing equipment.However,a wall-climbing robot inside a spherical tank cannot be accurately positioned owing to the particularity of the spherical tank structure.This paper proposes a passive support and positioning mechanism fixed in a spherical tank to improve the adsorption capacity and positioning accuracy of the inspection robot.The main body of the mechanism was designed as a truss composed of carbon fiber telescopic rods and can work in spherical tanks with diameters of 4.6-15.7 m.The structural strength,stiffness,and stability of the mechanism are analyzed via force and deformation simulations.By constructing a mathematical model of the support and positioning mechanism,the influence of structural deformation on the supporting capacity is analyzed and calculated.The robot positioning method based on the support and positioning mechanism can effectively locate the robot inside a spherical tank.Experiments verified the support performance and robot positioning accuracy of the mechanism.This research proposes an auxiliary support and positioning mechanism for a detection robot inside a spherical tank,which can effectively improve the positioning accuracy of the robot and meet the robotic inspection requirements. 展开更多
关键词 Support mechanism Inspection of the spherical tank Ansys simulation Robot positioning
下载PDF
Stiffness Analysis of Spherical Parallel Mechanism U_(P+R) with 2-DOF
14
作者 Yu-Lin Zhou Long Yang +2 位作者 Bo Li Da-Xing Zeng Feng Gao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第4期41-47,共7页
As one of the typical less-mobility parallel mechanisms, the spherical parallel mechanism Up.s with two degrees of freedom (2-DOF) possess high order overconstraints, and the calculation of its stiffness is partly d... As one of the typical less-mobility parallel mechanisms, the spherical parallel mechanism Up.s with two degrees of freedom (2-DOF) possess high order overconstraints, and the calculation of its stiffness is partly different with general parallel mechanisms owing to the bars in each branch are assumed to be arc-shaped. By means of small deformation superposition principle, the relationship between the angle displacement and line displacement of moving platform and the forces acted on the branches were derived out. Based on the results of static analysis, the relationship between the applied force, the line displacement and the angle displacement of the mechanism was set up. And then the stiffness matrix was obtained. The six principal stiffness of the mechanism and the corresponding directions were achieved by the orthogonal transformation. The numerical calculation was performed and the results showed that the principal stiffness and directions are varied with the pose-position of the mechanism, and the principal stiffness is gradually enlarged when it is far away from the anigin. In addition, the torsion stiffness is much greater and the line deformation stiffness is smaller, the difference between the two parts is huge. The research content of this paper supplies the theoretical foundation for the further engineering design and application of the spherical parallel mechanism. 展开更多
关键词 spherical parallel mechanism static stiffness orthogonal transformation line displacement ANGLE
下载PDF
Zonal disintegration mechanism of isotropic rock masses around a deep spherical tunnel
15
作者 谷新保 毕靖 许明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4074-4082,共9页
In order to investigate zonal disintegration mechanism of isotropic rock masses around a deep spherical tunnel, a new mechanical model subjected to dynamic unloading under hydrostatic pressure condition is proposed. T... In order to investigate zonal disintegration mechanism of isotropic rock masses around a deep spherical tunnel, a new mechanical model subjected to dynamic unloading under hydrostatic pressure condition is proposed. The total elastic stress-field distributions is determined using the elastodynamic equation. The effects of unloading rate and dynamic mechanical parameters of isotropic deep rock masses on the zonal disintegration phenomenon of the surrounding rock masses around a deep spherical tunnel as well as the total elastic stress field distributions are considered. The number and size of fractured and non-fractured zones are determined by using the Hoek-Brown criterion. Numerical computation is carried out. It is found from numerical results that the number of fractured zones increases with increasing the disturbance coefficient, in-situ stress, unloading time and unloading rate, and it decreases with increasing parameter geological strength index, the strength parameter and the uniaxial compressive strength of intact rock. 展开更多
关键词 zonal disintegration mechanism isotropic rock mass spherical tunnel dynamic unloading
下载PDF
Preparation of Non-spherical Colloidal Silica Nanoparticle and Its Application on Chemical Mechanical Polishing of Sapphire 被引量:3
16
作者 KONG Hui LIU Weili 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第1期86-90,共5页
Non-spherical colloidal silica nanoparticle was prepared by a simple new method, and its particle size distribution and shape morphology were characterized by dynamic light scattering(DLS) and the Focus Ion Beam(FIB) ... Non-spherical colloidal silica nanoparticle was prepared by a simple new method, and its particle size distribution and shape morphology were characterized by dynamic light scattering(DLS) and the Focus Ion Beam(FIB) system. This kind of novel colloidal silica particles can be well used in chemical mechanical polishing(CMP) of sapphire wafer surface. And the polishing test proves that non-spherical colloidal silica slurry shows much higher material removal rate(MRR) with higher coefficient of friction(COF) when compared to traditional large spherical colloidal silica slurry with particle size 80 nm by DLS. Besides, sapphire wafer polished by non-spherical abrasive also has a good surface roughness of 0.460 6 nm. Therefore, non-spherical colloidal silica has shown great potential in the CMP field because of its higher MRR and better surface roughness. 展开更多
关键词 COLLOIDAL silica NANOPARTICLE NON-spherical chemical mechanical POLISHING SAPPHIRE WAFER
下载PDF
MECHANICAL ANALYSIS OF ORBIT TRACKING MOVEMENT OF FEED SYSTEM IN LARGE SPHERICAL RADIO-TELESCOPE
17
作者 刘明治 沈玉如 +1 位作者 刘军 那柏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第9期1197-1203,共7页
The curve equation and its mechanics analysis of suspended-cable under the condition of end load are given. Then on the basis of it, the mechanical analysis of suspended-cable system for large spherical radio-telescop... The curve equation and its mechanics analysis of suspended-cable under the condition of end load are given. Then on the basis of it, the mechanical analysis of suspended-cable system for large spherical radio-telescope is studied, and procedures of the control for the orbit tracking movement of the line feed in large spherical radiotelescope are given. The validity of the results mentioned above is confirmed by means of computer simulations. 展开更多
关键词 curve equation of suspended-cable suspension mechanics large spherical radio-telescope orbit tracking movement control
下载PDF
Dynamics of five-bar COBOT using differential mechanism
18
作者 Li-xun Zhang Dun-min Lu +1 位作者 Lan Wang Jin-hua Shen and R. Bernhard 《Journal of Marine Science and Application》 2003年第2期72-75,共4页
COBOT is a new kind of collaborative robot , which can work with people in a shared space. In this paper a new kind of CVT using differential mechanism is introduced, which is major parts of five-bar COBOT and based t... COBOT is a new kind of collaborative robot , which can work with people in a shared space. In this paper a new kind of CVT using differential mechanism is introduced, which is major parts of five-bar COBOT and based the feature of nonhlonnmic constraint. The dynamic model of differential mechanism and five-bar architecture COBOT is founded. There are two kinds of coupled mode of two CVT:serial and parallel. In this paper, we present the dynamic model of serial and parallel COBOT take five-bar COBOT as research object. From the dynamic analysis foregoing, both serial and parallel COBOT model are have the feature of nonholonomic constraint. The ending track and moving state are controlled by the force of control motor and operator. The control motor can not control the movement and ending track of COBOT without the cooperation of operator. 展开更多
关键词 COBOT five-bar differential mechanism CVT
下载PDF
Effects of Spherical Light-weight Aggregates Additions on Workability and Mechanical Properties of Al_2O_3-SiO_2 System Castables
19
作者 YU Renhong LIU Pengcheng +1 位作者 DONG Gaofeng DONG Hongqin 《China's Refractories》 CAS 2017年第4期1-6,共6页
In order to clarify the effect of spherical light-weight aggregates addition on properties of A12 07 - Si02 system castables, adopting ATO mullite traditional light-weight aggregates and ATO mullite spherical light-we... In order to clarify the effect of spherical light-weight aggregates addition on properties of A12 07 - Si02 system castables, adopting ATO mullite traditional light-weight aggregates and ATO mullite spherical light-weight aggre- gates, bauxite homogenization powder, microsilica , cal- cium aluminate cement as main raw materials, light- weight Al2 03 - SiO2 system castables were prepared by replacing conventional light-weight aggregate with spherical light-weight aggregates. The effects of spheri- cal light-weight aggregates addition on workability, me- chanical properties of castables after heated at different temperatures were researched; the microstructure of the aggregates was analyzed by SEM. The result shows that the introduction of spherical light-weight aggregates can significantly improve the flowability and reduce the water addition of the castables. Water demand of the castable is reduced from 18% with the conventional light-weight aggregates to 14% with spherical light-weight aggre- gates. In addition, light-weight castables prepared by spherical aggregates can keep the same workability with- in a wider range of water addition. Therefore, spherical aggregates are user-friendly. The introduction of spheri- cal light-weight aggregates is favorable to packing densi- ty and mechanical properties of castables, such as cold crushing strength, cold modulus of rupture, hot modulus of rupture at 1 200℃. 展开更多
关键词 spherical light-weight aggregates ability mechanical properties alumina - silica castables work- system
下载PDF
A New Design Method for Realizing Accurate Track of Hybrid-driven Five-bar Mechanism
20
作者 ZHU Yonggang LU Xinsheng 《International Journal of Plant Engineering and Management》 2018年第4期226-233,共8页
The concept of virtual slider crank mechanism is proposed and decoupled to obtain parameters of controllable five bar mechanism without any principle error for any given trajectory. The model is simple and easy to sol... The concept of virtual slider crank mechanism is proposed and decoupled to obtain parameters of controllable five bar mechanism without any principle error for any given trajectory. The model is simple and easy to solve. This method has no convergence,flexible workspace and singularity of the mechanism problem. Through this method,we don’ t need any curve to fit the trajectory point. Using MATLAB program to calculate,the computation time can be reduced to less than 3% of the original. Finally,an example is given to illustrate the method which is meanwhile compared with the traditional five bar design method. 展开更多
关键词 hybrid-driven five-bar mechanism virtual crank slider mechanism decoupling algorithm
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部