We propose a novel interactive lighting editing system for lighting a single indoor RGB image based on spherical harmonic lighting.It allows users to intuitively edit illumination and relight the complicated low-light...We propose a novel interactive lighting editing system for lighting a single indoor RGB image based on spherical harmonic lighting.It allows users to intuitively edit illumination and relight the complicated low-light indoor scene.Our method not only achieves plausible global relighting but also enhances the local details of the complicated scene according to the spatially-varying spherical harmonic lighting,which only requires a single RGB image along with a corresponding depth map.To this end,we first present a joint optimization algorithm,which is based on the geometric optimization of the depth map and intrinsic image decomposition avoiding texture-copy,for refining the depth map and obtaining the shading map.Then we propose a lighting estimation method based on spherical harmonic lighting,which not only achieves the global illumination estimation of the scene,but also further enhances local details of the complicated scene.Finally,we use a simple and intuitive interactive method to edit the environment lighting map to adjust lighting and relight the scene.Through extensive experimental results,we demonstrate that our proposed approach is simple and intuitive for relighting the low-light indoor scene,and achieve state-of-the-art results.展开更多
基金supported by NSFC(No.61972298)Bingtuan Science and Technology Program(No.2019BC008).
文摘We propose a novel interactive lighting editing system for lighting a single indoor RGB image based on spherical harmonic lighting.It allows users to intuitively edit illumination and relight the complicated low-light indoor scene.Our method not only achieves plausible global relighting but also enhances the local details of the complicated scene according to the spatially-varying spherical harmonic lighting,which only requires a single RGB image along with a corresponding depth map.To this end,we first present a joint optimization algorithm,which is based on the geometric optimization of the depth map and intrinsic image decomposition avoiding texture-copy,for refining the depth map and obtaining the shading map.Then we propose a lighting estimation method based on spherical harmonic lighting,which not only achieves the global illumination estimation of the scene,but also further enhances local details of the complicated scene.Finally,we use a simple and intuitive interactive method to edit the environment lighting map to adjust lighting and relight the scene.Through extensive experimental results,we demonstrate that our proposed approach is simple and intuitive for relighting the low-light indoor scene,and achieve state-of-the-art results.