The spherical valve plate/cylinder block pair has the advantages of strong overturning resistance and large bearing area.However,the configurations of the unloading and pre-boosting triangular grooves on the spherical...The spherical valve plate/cylinder block pair has the advantages of strong overturning resistance and large bearing area.However,the configurations of the unloading and pre-boosting triangular grooves on the spherical valve plate are different from those in the planar valve plate,resulting in special cavitation phenomenon on the spherical port plate pair.In order to study cavitation characteristics of spherical port plate pair,a dynamic CFD model of the piston pump including turbulence model,cavitation model and fluid compressibility is established.A detailed UDF compilation scheme is provided for modelling of the micron-sized spherical oil film mesh,which makes up for the lack of research on the meshing of the spherical oil film.In this paper,using CFD simulation tools,from the perspectives of pressure field,velocity field and gas volume fraction change,a detailed analysis of the transient evolution of the submerged cavitation jet in a axial piston pump with spherical valve plate is carried out.The study indicates the movement direction of the cavitation cloud cluster through the cloud image and the velocity vector direction of the observation point.The sharp decrease of velocity and gas volume fraction indicates the collapse phenomenon of bubbles on the part wall surface.These discoveries verify the special erosion effect in case of the spherical valve plate/cylinder block pair.The submerged cavitation jet generated by the unloading triangular grooves distributed on the spherical valve plate not only cause denudation of the inner wall surface of the valve plate,but also cause strong impact and denudation on the lower surface of the cylinder body.Finally,the direction of the unloading triangular groove was modified to extend the distance between it and the wall surface which can effectively alleviate the erosion effect.展开更多
Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diamete...Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diameter, is larger than 1, there exists two-dimensional tensile stress in the deformed body, when the ratio is smaller than 1, there exists shear stress in static hydraulic zone. The former breaks through the theory that there is three-dimensional compressive stress irrespective of any ratio of height to diameter. The latter satisfactorily explains the mechanism of layer-like cracks in disk-shaped forgings and the flanges of forged gear axles. The representation of the two models makes the upsetting, theory into correct and perfect stage.展开更多
Based on the motion differential equations of vibration and acoustic coupling system for thin elastic spherical shell with an elastic plate attached to its internal surface,in which Dirac-δ functions are employed to ...Based on the motion differential equations of vibration and acoustic coupling system for thin elastic spherical shell with an elastic plate attached to its internal surface,in which Dirac-δ functions are employed to introduce the moments and forces applied by the attachment on the surface of shell,by means of expanding field quantities as Legendre series,a semi-analytic solution is derived for the vibration and acoustic radiation from a submerged stiffened spherical shell with a deck-type internal plate,which has a satisfactory computational effectiveness and precision for an arbitrary frequency range.It is easy to analyze the effect of the internal plate on the acoustic radiation field by using the formulas obtained by the method proposed.It is concluded that the internal plate can significantly change the mechanical and acoustic characteristics of shell,and give the coupling system a very rich resonance frequency spectrum.Moreover,the method can be used to study the acoustic radiation mechanism in similar structures as the one studied here.展开更多
To study the bending deformation of the lithosphere, the simplification of replacing a spherical shell by a plate model is usually made. Based on the differential equations for the bending of plates and shallow spheri...To study the bending deformation of the lithosphere, the simplification of replacing a spherical shell by a plate model is usually made. Based on the differential equations for the bending of plates and shallow spherical shells, an expression for the error caused by such a simplification is derived in this paper. The effect of model sizes on the error is discussed. It is proved that if we replace the shallow spherical shell by a plate model to solve the bending deformation of lithospheric plate, a large error will be caused. In contrast, if we use a plate on an elastic foundation instead, an approximate solution closer to that of spherical shell can be obtained. In such a way, the error can be reduced effectively and the actual geological condition can be modeled more closely.展开更多
Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of g...Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of graphite particle size and shape on the bipolar plate performance, such as electrical conductivity, strength, etc. showed that with decrease of graphite particle size, bulk electrical conductivity and thermometric conductivity decreased, but that flexural strength was enhanced. After spherical graphite occurrence in flake-like form, the flexural strength of the bipolar plate was enhanced, electrical conductivity increased but thermal conductivity decreased in direction paralleling pressure direction, and both electrical conductivity and thermometric conductivity reduced in direction perpendicular to pressure direction.展开更多
Hot plate forming using a cell-typed die is a process for forming a large thick plate with a spherical shape for the manufacture of a large spherical LNG tank.Cell-typed upper and lower dies made of a framework of ste...Hot plate forming using a cell-typed die is a process for forming a large thick plate with a spherical shape for the manufacture of a large spherical LNG tank.Cell-typed upper and lower dies made of a framework of steel plates fitted to make a grid pattern are used in this process,and an air-cooling device is separately installed inside the lower die.A finite element analysis (FEA) technique was developed,which included hot forming,air flow,cooling and thermal deformation analysis for the hot plate forming process using the cell-typed die.Further,the convective and interface heat transfer coefficients were used to reproduce analytically the effects of the cooling device in the hot plate forming analysis.A small-scale model test of the process was conducted to verify the FEA technique.The analysis results show that the curvature of the final plate agrees well with that of the designed experiment within a maximum relative error of 0.03% at the corner of the plate.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51605322)Shanxi Provincial Natural Science Foundation of China(Grant No.201901D111054)+1 种基金International Cooperation Project of Shanxi Province(Grant No.2016-002)Key Laboratory of Fluid and Power Machinery,Ministry of Education(Grant No.GZKF-201815).
文摘The spherical valve plate/cylinder block pair has the advantages of strong overturning resistance and large bearing area.However,the configurations of the unloading and pre-boosting triangular grooves on the spherical valve plate are different from those in the planar valve plate,resulting in special cavitation phenomenon on the spherical port plate pair.In order to study cavitation characteristics of spherical port plate pair,a dynamic CFD model of the piston pump including turbulence model,cavitation model and fluid compressibility is established.A detailed UDF compilation scheme is provided for modelling of the micron-sized spherical oil film mesh,which makes up for the lack of research on the meshing of the spherical oil film.In this paper,using CFD simulation tools,from the perspectives of pressure field,velocity field and gas volume fraction change,a detailed analysis of the transient evolution of the submerged cavitation jet in a axial piston pump with spherical valve plate is carried out.The study indicates the movement direction of the cavitation cloud cluster through the cloud image and the velocity vector direction of the observation point.The sharp decrease of velocity and gas volume fraction indicates the collapse phenomenon of bubbles on the part wall surface.These discoveries verify the special erosion effect in case of the spherical valve plate/cylinder block pair.The submerged cavitation jet generated by the unloading triangular grooves distributed on the spherical valve plate not only cause denudation of the inner wall surface of the valve plate,but also cause strong impact and denudation on the lower surface of the cylinder body.Finally,the direction of the unloading triangular groove was modified to extend the distance between it and the wall surface which can effectively alleviate the erosion effect.
基金National Natural Science Foundation of China(No.59235101)
文摘Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diameter, is larger than 1, there exists two-dimensional tensile stress in the deformed body, when the ratio is smaller than 1, there exists shear stress in static hydraulic zone. The former breaks through the theory that there is three-dimensional compressive stress irrespective of any ratio of height to diameter. The latter satisfactorily explains the mechanism of layer-like cracks in disk-shaped forgings and the flanges of forged gear axles. The representation of the two models makes the upsetting, theory into correct and perfect stage.
基金Project supported by the National Natural Science Foundation of China(No.10172038).
文摘Based on the motion differential equations of vibration and acoustic coupling system for thin elastic spherical shell with an elastic plate attached to its internal surface,in which Dirac-δ functions are employed to introduce the moments and forces applied by the attachment on the surface of shell,by means of expanding field quantities as Legendre series,a semi-analytic solution is derived for the vibration and acoustic radiation from a submerged stiffened spherical shell with a deck-type internal plate,which has a satisfactory computational effectiveness and precision for an arbitrary frequency range.It is easy to analyze the effect of the internal plate on the acoustic radiation field by using the formulas obtained by the method proposed.It is concluded that the internal plate can significantly change the mechanical and acoustic characteristics of shell,and give the coupling system a very rich resonance frequency spectrum.Moreover,the method can be used to study the acoustic radiation mechanism in similar structures as the one studied here.
文摘To study the bending deformation of the lithosphere, the simplification of replacing a spherical shell by a plate model is usually made. Based on the differential equations for the bending of plates and shallow spherical shells, an expression for the error caused by such a simplification is derived in this paper. The effect of model sizes on the error is discussed. It is proved that if we replace the shallow spherical shell by a plate model to solve the bending deformation of lithospheric plate, a large error will be caused. In contrast, if we use a plate on an elastic foundation instead, an approximate solution closer to that of spherical shell can be obtained. In such a way, the error can be reduced effectively and the actual geological condition can be modeled more closely.
文摘Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of graphite particle size and shape on the bipolar plate performance, such as electrical conductivity, strength, etc. showed that with decrease of graphite particle size, bulk electrical conductivity and thermometric conductivity decreased, but that flexural strength was enhanced. After spherical graphite occurrence in flake-like form, the flexural strength of the bipolar plate was enhanced, electrical conductivity increased but thermal conductivity decreased in direction paralleling pressure direction, and both electrical conductivity and thermometric conductivity reduced in direction perpendicular to pressure direction.
基金Project(2010-0008-277)supported by the NCRC(National Core Research Center)Program through the National Research Foundation of Korea,funded by the Ministry of Education,Science,and TechnologyProject supported by R&D for Technology Development Program of Ministry of Knowledge Economy,Korea
文摘Hot plate forming using a cell-typed die is a process for forming a large thick plate with a spherical shape for the manufacture of a large spherical LNG tank.Cell-typed upper and lower dies made of a framework of steel plates fitted to make a grid pattern are used in this process,and an air-cooling device is separately installed inside the lower die.A finite element analysis (FEA) technique was developed,which included hot forming,air flow,cooling and thermal deformation analysis for the hot plate forming process using the cell-typed die.Further,the convective and interface heat transfer coefficients were used to reproduce analytically the effects of the cooling device in the hot plate forming analysis.A small-scale model test of the process was conducted to verify the FEA technique.The analysis results show that the curvature of the final plate agrees well with that of the designed experiment within a maximum relative error of 0.03% at the corner of the plate.