A two-year field experiment was conducted to evaluate the effects of plant density on tassel and ear differentiation, anthesissilking interval(ASI), and grain yield formation of two types of modern maize hybrids(Zhong...A two-year field experiment was conducted to evaluate the effects of plant density on tassel and ear differentiation, anthesissilking interval(ASI), and grain yield formation of two types of modern maize hybrids(Zhongdan 909(ZD909) as tolerant hybrid to crowding stress, Jidan 209(JD209) and Neidan 4(ND4) as intolerant hybrids to crowding stress) in Northeast China. Plant densities of 4.50×104(D1), 6.75×104(D2), 9.00×104(D3), 11.25×104(D4), and 13.50×104(D5) plants ha-1had no significant effects on initial time of tassel and ear differentiation of maize. Instead, higher plant density delayed the tassel and ear development during floret differentiation and sexual organ formation stage, subsequently resulting in ASI increments at the rate of 1.2–2.9 days on average for ZD909 in 2013–2014, 0.7–4.2 days for JD209 in 2013, and 0.5–3.7 days for ND4 in 2014, respectively, under the treatments of D2, D3, D4, and D5 compared to that under the D1 treatment. Total florets, silking florets, and silking rates of ear showed slightly decrease trends with the plant density increasing, whereas the normal kernels seriously decreased at the rate of 11.0–44.9% on average for ZD909 in 2013–2014, 2.0–32.6% for JD209 in 2013, and 9.7–28.3% for ND4 in 2014 with the plant density increased compared to that under the D1 treatment due to increased florets abortive rates. It was also observed that 100-kernel weight of ZD909 showed less decrease trend compared that of JD209 and ND4 along with the plant densities increase. As a consequence, ZD909 gained its highest grain yield by 13.7 t ha-1on average at the plant density of 9.00×104 plants ha-1, whereas JD209 and ND4 reached their highest grain yields by 11.7 and 10.2 t ha-1at the plant density of 6.75×104 plants ha-1, respectively. Our experiment demonstrated that hybrids with lower ASI, higher kernel number potential per ear, and relative constant 100-kernel weight(e.g., ZD909) could achieve higher yield under dense planting in high latitude area(e.g., Northeast China).展开更多
Photoperiodic response is an important characteristic that plays an important role in plant adaptability for various environments. Wheat cultivars grow widely and have high yield potential for the strong photoperiod a...Photoperiodic response is an important characteristic that plays an important role in plant adaptability for various environments. Wheat cultivars grow widely and have high yield potential for the strong photoperiod adaptibility. To assess the photoperiodic response of different genotypes in wheat cultivars, the photoperiodic effects of the Ppd-D1 alleles and the expressions of the related TaGI, TaCO and Ta FT genes in Liaochun 10 and Ningchun 36 were investigated under the short-day(6 h light, SD), moderate-day(12 h light, MD) and long-day(24 h light, LD) conditions. Amplicon length comparison indicated that the promoter of Ppd-D1 in Ningchun 36 is intact, while Liaochun 10 presented the partial sequence deletion of Ppd-D1 promoter. The durations of all developmental stages of the two cultivars were reduced by subjection to an extended photoperiod, except for the stamen and pistil differentiation stage in the Liaochun 10 cultivar. The expression levels of the Ppd-D1 alleles and the TaGI, TaCO and TaFT genes associated with the photoperiod pathway were examined over a 24-h period under SD and MD conditions. The relationships of different photoperiodic responses of the two cultivars and the expression of photoperiod pathway genes were analyzed accordingly. The photoperiod insensitive(PI) genotype plants flower early under SD; meanwhile, the abnormal expression of the Ppd-D1 a allele is accompanied with an increase in Ta FT1 expression and the TaCO expression variation. The results would facilitate molecular breeding in wheat.展开更多
基金supported by the National Basic Research Program of China (2015CB150404)the National Natural Science Foundation of China (31671642)+1 种基金the Key Program of Science and Technology Department of Jilin Province, China (LFGC14205)the Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-XTCX2016008)
文摘A two-year field experiment was conducted to evaluate the effects of plant density on tassel and ear differentiation, anthesissilking interval(ASI), and grain yield formation of two types of modern maize hybrids(Zhongdan 909(ZD909) as tolerant hybrid to crowding stress, Jidan 209(JD209) and Neidan 4(ND4) as intolerant hybrids to crowding stress) in Northeast China. Plant densities of 4.50×104(D1), 6.75×104(D2), 9.00×104(D3), 11.25×104(D4), and 13.50×104(D5) plants ha-1had no significant effects on initial time of tassel and ear differentiation of maize. Instead, higher plant density delayed the tassel and ear development during floret differentiation and sexual organ formation stage, subsequently resulting in ASI increments at the rate of 1.2–2.9 days on average for ZD909 in 2013–2014, 0.7–4.2 days for JD209 in 2013, and 0.5–3.7 days for ND4 in 2014, respectively, under the treatments of D2, D3, D4, and D5 compared to that under the D1 treatment. Total florets, silking florets, and silking rates of ear showed slightly decrease trends with the plant density increasing, whereas the normal kernels seriously decreased at the rate of 11.0–44.9% on average for ZD909 in 2013–2014, 2.0–32.6% for JD209 in 2013, and 9.7–28.3% for ND4 in 2014 with the plant density increased compared to that under the D1 treatment due to increased florets abortive rates. It was also observed that 100-kernel weight of ZD909 showed less decrease trend compared that of JD209 and ND4 along with the plant densities increase. As a consequence, ZD909 gained its highest grain yield by 13.7 t ha-1on average at the plant density of 9.00×104 plants ha-1, whereas JD209 and ND4 reached their highest grain yields by 11.7 and 10.2 t ha-1at the plant density of 6.75×104 plants ha-1, respectively. Our experiment demonstrated that hybrids with lower ASI, higher kernel number potential per ear, and relative constant 100-kernel weight(e.g., ZD909) could achieve higher yield under dense planting in high latitude area(e.g., Northeast China).
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2011BAD16B07,2013BAD04B01)the National Natural Science Foundation of China(31271726)
文摘Photoperiodic response is an important characteristic that plays an important role in plant adaptability for various environments. Wheat cultivars grow widely and have high yield potential for the strong photoperiod adaptibility. To assess the photoperiodic response of different genotypes in wheat cultivars, the photoperiodic effects of the Ppd-D1 alleles and the expressions of the related TaGI, TaCO and Ta FT genes in Liaochun 10 and Ningchun 36 were investigated under the short-day(6 h light, SD), moderate-day(12 h light, MD) and long-day(24 h light, LD) conditions. Amplicon length comparison indicated that the promoter of Ppd-D1 in Ningchun 36 is intact, while Liaochun 10 presented the partial sequence deletion of Ppd-D1 promoter. The durations of all developmental stages of the two cultivars were reduced by subjection to an extended photoperiod, except for the stamen and pistil differentiation stage in the Liaochun 10 cultivar. The expression levels of the Ppd-D1 alleles and the TaGI, TaCO and TaFT genes associated with the photoperiod pathway were examined over a 24-h period under SD and MD conditions. The relationships of different photoperiodic responses of the two cultivars and the expression of photoperiod pathway genes were analyzed accordingly. The photoperiod insensitive(PI) genotype plants flower early under SD; meanwhile, the abnormal expression of the Ppd-D1 a allele is accompanied with an increase in Ta FT1 expression and the TaCO expression variation. The results would facilitate molecular breeding in wheat.