We have performed magnetization measurements and electron spin resonance (ESR) on polycrystalline manganites of Nd0.5Sr0.5-xBaxMnO3 (x = 0.1). Phase separation and phase transitions are observed from the susceptib...We have performed magnetization measurements and electron spin resonance (ESR) on polycrystalline manganites of Nd0.5Sr0.5-xBaxMnO3 (x = 0.1). Phase separation and phase transitions are observed from the susceptibility and the ESR spectra data. Between 260 K (~ Tc) and 185 K (~ TN), the system coexists of the paramagnetic phase and the ferromagnetic (FM) phase. Between 185 K and 140 K, the system coexists of the FM phase and the antiferromagnetic (AFM) phase. These results indicate that the system has a very complex magnetic state due to the origin of the instability stemming from manganite Nd0.5Sr0.4Ba0.1MnO3 by partially substituting the larger Ba^2+ ions for the smaller Sr^2+ ions.展开更多
A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host ^14N nuclea...A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host ^14N nuclear spin and the nitrogen-vacancy centre electron spin, different orientations of the ^14N nuclear spins lead to a triplet splitting of the transition between ground state (ms = 0) and excited state (ms=1). The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm. Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.展开更多
We evaluated the hydroxyl and alkyl-oxy radical scavenging activity of instant coffee using an electron spin resonance (ESR) spin-trapping method, which was based the spin-trapping reagent 5-(2,2-dimethy-l,3-propox...We evaluated the hydroxyl and alkyl-oxy radical scavenging activity of instant coffee using an electron spin resonance (ESR) spin-trapping method, which was based the spin-trapping reagent 5-(2,2-dimethy-l,3-propoxycyclophosphoryl)-5-methyl-l-pyrroline N-oxide (CYPMPO). In this method, very pure hydroxyl and alkyl-oxy radicals were generated by illuminating a phosphate buffer solution containing hydrogen peroxide and 2,2'-azobis (2-amidinopropane) dihydrochloride with a Hg-Xe arc lamp. The ESR adduct signal was sensitive and very stable. We concluded that instant coffee has high hydroxyl radical and alkyl-oxy radical scavenging activity.展开更多
Control over the tunneling current in spintronic devices by electrical methods is an interesting topic, which is experiencing a burst of activity. In this paper, we theoretically investigate the transport property of ...Control over the tunneling current in spintronic devices by electrical methods is an interesting topic, which is experiencing a burst of activity. In this paper, we theoretically investigate the transport property of electrons in a spin-diode structure consisting of a single quantum dot(QD) weakly coupled to one nonmagnetic(NM) and one half-metallic ferromagnet(HFM) leads, in which the QD has an artificial atomic nature. By modulating the gate voltage applied on the dot, we observe a pronounced decrease in the current for one bias direction. We show that this rectification is spin-dependent, which stems from the interplay between the spin accumulation and the Coulomb blockade on the quantum dot. The degree of such spin diode behavior is fully and precisely tunable using the gate and bias voltages. The present device can be realized within current technologies and has potential application in molecular spintronics and quantum information processing.展开更多
We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (PI center) and 13C nuclear spin bath. In prev...We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (PI center) and 13C nuclear spin bath. In previous works, only one dominant decoherence source is studied: P1 electron spin bath for type-Ⅰb diamond; or 13C nuclear spin bath for type-Ⅱa diamond. In general, the thermal fluctuation from both spin baths can be eliminated by the Hahn echo sequence, resulting in a long coherence time (T2 ) of about 400#8. However, in a high-purity type-Ⅱa diamond where 1℃ nuclear spin bath is the dominant decoherence source, dramatic decreases of NV electron spin T2 time caused by P1 electron spin bath are observed under certain magnetic field. We further apply the engineered Hahn echo sequence to confirm the decoherenee mechanism of multiple spin baths and quantitatively estimate the contribution of P1 electron spin bath. Our results are helpful to understand the NV decoherence mechanisms, which will benefit quantum computing and quantum metrology.展开更多
A new GaAs(100) spin polarized electron source with an optical polarimeter, which is employed in the field of polarized electron and gas atom collision, is presented in detail. The apparatus is passive-magnetic-shie...A new GaAs(100) spin polarized electron source with an optical polarimeter, which is employed in the field of polarized electron and gas atom collision, is presented in detail. The apparatus is passive-magnetic-shielded by a box and a cylinder made of nickel-iron-molybdenum soft magnetic alloy without Helmholtz coil arrangement. And a uniformly distributed residual magnetic field of less than 5 × 10^-7T is obtained near the collision area. The spin polarized electron beam is transmitted and focused onto collision point from photocathode by a set of electron optics with more than 25% transmission 95 cm distance through an 1 mm diameter aperture. Construction and operation of the apparatus, such as vacuum and magnetic shielding system, photocathode, laser optics, electron optics and polarimeter are discussed. The polarization of the spin polarized electron beam is determined to be 30.8 ±3.5% measured with a He optical polarimeter.展开更多
A single-molecule magnet is a long-sought-after nanoscale component because it can enable us to miniaturize nonvolatile memory storage devices.The signature of a single-molecule magnet is switching between two bistabl...A single-molecule magnet is a long-sought-after nanoscale component because it can enable us to miniaturize nonvolatile memory storage devices.The signature of a single-molecule magnet is switching between two bistable magnetic ground states under an external magnetic field.Based on this feature,we theoretically investigate a magnetic-fieldcontrolled reversible resistance change active at low temperatures in a molecular magnetic tunnel junction,which consists of a single-molecule magnet sandwiched between a ferromagnetic electrode and a normal metal electrode.Our numerical results demonstrate that the molecular magnetism orientation can be manipulated by magnetic fields to be parallel/antiparallel to the ferromagnetic electrode magnetization.Moreover,different magnetic configurations can be“read out”based on different resistance states or different spin polarization parameters in the current spectrum,even in the absence of a magnetic field.Such an external magnetic field-controlled resistance state switching effect is similar to that in traditional spin valve devices.The difference between the two systems is that one of the ferromagnetic layers in the original device has been replaced by a magnetic molecule.This proposed scheme provides the possibility of better control of the spin freedom of electrons in molecular electrical devices,with potential applications in future high-density nonvolatile memory devices.展开更多
The effect of Eu3+ ion doping in the La sites of single-crystal La4/3Srs/3Mn2O7 was investigated. Electron spin resonance (ESR) was applied to La4/3Sr5/3Mn2O7 and (Lao.8Euo.2)4/3Sr5/3Mn2O7 single crystals. A phas...The effect of Eu3+ ion doping in the La sites of single-crystal La4/3Srs/3Mn2O7 was investigated. Electron spin resonance (ESR) was applied to La4/3Sr5/3Mn2O7 and (Lao.8Euo.2)4/3Sr5/3Mn2O7 single crystals. A phase separation and phase transitions were observed from the ESR spectra data. Between 350 K and 300 K, both paramagnetic resonance (PMR) and anisotropic ferromagnetic resonance (FMR) lines were observed in the ab plane and the c axis direction, suggesting a coexistence of the paramagnetic (PM) phase and the ferromagnetic (FM) phase. The magnetization measurement reveals a spin-glass-like behavior in single-crystal (Lao.8Euo.2)4/3 Sr5/3Mn2O7 below the temperature of spin freezing Tf (- 29.5 K).展开更多
This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. ...This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. The phonon absorption and emission processes as well as the photon absorption and emission processes in all electron transition processes can be explained in an organized manner, and the result can be represented in a diagram that can provide intuition for the quantum dynamics of electrons in a solid. The temperature (T) dependence of electron spin relaxation times (T1) in silicon is T1 ∝ T-1.07 at low temperatures and T1 ∝ T-3.3 at high temperatures for acoustic deformation constant Pad = 1.4 × 10^7 eV and optical deformation constant Pod = 4.0 × 10^17 eV/m. This means that electrons are scattered by the acoustic deformation phonons at low temperatures and optical deformation phonons at high temperatures, respectively. The magnetic field (B) dependence of the relaxation times is T1 ∝ B-2.7 at 100 K and T1 ∝ B-2.3 at 150 K, which nearly agree with the result of Yafet, T1 ∝ B-3.0- B -2.5.展开更多
With spin-polarized-dependent band gap renormalization effect taken into account, the energy-dependent evolu- tion of electron spin polarization in GaAs is calculated at room temperature and at a low temperature of 1O...With spin-polarized-dependent band gap renormalization effect taken into account, the energy-dependent evolu- tion of electron spin polarization in GaAs is calculated at room temperature and at a low temperature of 1OK. We consider the exciting light with right-handed circular polarization, and the calculation results show that the degree of electron spin polarization is dependent strongly on the quasi-Fermi levels of |1/2) and |- 1/2) spin conduction bands. At room temperature, the degree of electron spin polarization decreases sharply from 1 near the bottom of the conduction band, and then increases to a stable value above the quasi-Fermi level of the |- 1/2) band. The greater the quasi-Fermi level is, the higher the degree of electron spin polarization with excessive en- ergy above the quasi-Fermi level of the |- 1/2) band can be achieved. At low temperature, the degree of electron spin polarization decreases from 1 sharply near the bottom of the conduction band, and then increases with the excessive energy, and in particular, up to a maximum of i above the quasi-Fermi level of the |1/2) band.展开更多
A Fe doped rutile TiO2 single crystal is grown in an O2 atmosphere by the floating zone technique. Electron spin resonance (ESR) spectra clearly demonstrate that Fe^3+ ions are substituted for the Ti^4+ ions in th...A Fe doped rutile TiO2 single crystal is grown in an O2 atmosphere by the floating zone technique. Electron spin resonance (ESR) spectra clearly demonstrate that Fe^3+ ions are substituted for the Ti^4+ ions in the rutile TiO2 matrix. Magnetization measurements reveal that the Fe:TiO2 crystal shows paramagnetic behaviour in a temperature range from 5 K to 350 K. The Fe^3+ ions possess weak magnetic anisotropy with an easy axis along the c axis. The annealed Fe:TiO2 crystal shows spin-glass-like behaviours due to the aggregation of the ferromagnetic clusters.展开更多
Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved t...Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the hyperfine Zeeman sublevels, which results from the collision-induced modification δa(S·I) of the hyperfine interaction of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different buffer-gas pressures. The experimental results show that high-field optical pumping and the small change δa(S · I) of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.展开更多
The carrier-density-dependent spin relaxation dynamics for modulation-doped GaAs/Al0.3 Gao,TAs quantum wells is studied using the time-resolved magneto-Kerr rotation measurements. The electron spin relaxation time and...The carrier-density-dependent spin relaxation dynamics for modulation-doped GaAs/Al0.3 Gao,TAs quantum wells is studied using the time-resolved magneto-Kerr rotation measurements. The electron spin relaxation time and its in-plane anisotropy are studied as a function of the optically injected electron density, Moreover, the relative strength of the Rashba and the Dresselhaus spin-rbit coupling fields, and thus the observed spin relaxation time anisotropy, is further tuned by the additional excitation of a 532nm continuous wave laser, demonstrating an effective spin relaxation manipulation via an optical gating method.展开更多
ESR saturation power point of the hair of healthy, lung cancer, esophageal cancer, as well as silicosis, tuberculosis and cardiovascular disease were detected. The results show that the positive rate is 1.69%, 85.42%,...ESR saturation power point of the hair of healthy, lung cancer, esophageal cancer, as well as silicosis, tuberculosis and cardiovascular disease were detected. The results show that the positive rate is 1.69%, 85.42%, 90.4%, 20.00%, 27.27% and 0% respectively. There is a significant difference between lung cancer, esophageal cancer and healthy persons (P<0. 001). ESR saturation power point elevates sharply after treatment of lung cancer, 71. 43% of total cases ranged from 7. 9 to 24. 0 (mW), after treatment of esophageal cancer, 71. 23% ranged from 7.9 to 19.9 (mW). All patients with cardiovascular disease were examined to be negative, i. e. , above 10. 0 (mW).展开更多
The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we develope...The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.展开更多
Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of n...Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot(QD) by the coherent population trapping(CPT) and the electric dipole spin resonance(EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip–flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.展开更多
Spin noise spectroscopy (SNS) of electrons in n-doped bulk GaAs is studied as functions of temperature and the probe-laser energy. Experimental results show that the SNS signal comes from localized electrons in the ...Spin noise spectroscopy (SNS) of electrons in n-doped bulk GaAs is studied as functions of temperature and the probe-laser energy. Experimental results show that the SNS signal comes from localized electrons in the donor band. The spin relaxation time of electrons~ which is retrieved from the SNS measurement, depends on the probe light energy and temperature, and it can be ascribed to the variation of electron localization degree.展开更多
The influence of the intrinsic spin of electrons on the excitation of transverse electromagnetic surface waves in magnetized plasma is considered. We use a fluid formalism to include quantum corrections due to the Boh...The influence of the intrinsic spin of electrons on the excitation of transverse electromagnetic surface waves in magnetized plasma is considered. We use a fluid formalism to include quantum corrections due to the Bohm potential and magnetization energy of electrons due to its spin. The effects of both quantum corrections are shown in the dispersion relation for the propagation of surface waves. Also, it is found that the phase and group velocities are increased due to the quantum effects. In the nonrelativistic motion of electrons, the spin effects become noticeable even when the external magnetic field is relatively low.展开更多
The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state ...The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state as a function of n. The paper shows, for the case of the harmonic oscillator taken as an example, that the De Broglie’s dependence of the transition velocity on n is equal to the n-dependence of that velocity calculated with the aid of the uncertainty principle for the energy and time. In the next step the minimal distance parameter provided by the uncertainty principle is applied in calculating the magnetic moment of the electron which effectuates its orbital motion in the magnetic field. This application gives readily the electron spin magnetic moment as well as the quantum of the magnetic flux known in superconductors as its result.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 50672126)the Inner Mongolia Natural Science Foundation of China (Grant No 200607010102)
文摘We have performed magnetization measurements and electron spin resonance (ESR) on polycrystalline manganites of Nd0.5Sr0.5-xBaxMnO3 (x = 0.1). Phase separation and phase transitions are observed from the susceptibility and the ESR spectra data. Between 260 K (~ Tc) and 185 K (~ TN), the system coexists of the paramagnetic phase and the ferromagnetic (FM) phase. Between 185 K and 140 K, the system coexists of the FM phase and the antiferromagnetic (AFM) phase. These results indicate that the system has a very complex magnetic state due to the origin of the instability stemming from manganite Nd0.5Sr0.4Ba0.1MnO3 by partially substituting the larger Ba^2+ ions for the smaller Sr^2+ ions.
基金supported by the National Basic Research Program of China(Grant No.2009CB929103)the National Natural Science Foundation of China(Grant No.10974251)
文摘A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host ^14N nuclear spin and the nitrogen-vacancy centre electron spin, different orientations of the ^14N nuclear spins lead to a triplet splitting of the transition between ground state (ms = 0) and excited state (ms=1). The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm. Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.
文摘We evaluated the hydroxyl and alkyl-oxy radical scavenging activity of instant coffee using an electron spin resonance (ESR) spin-trapping method, which was based the spin-trapping reagent 5-(2,2-dimethy-l,3-propoxycyclophosphoryl)-5-methyl-l-pyrroline N-oxide (CYPMPO). In this method, very pure hydroxyl and alkyl-oxy radicals were generated by illuminating a phosphate buffer solution containing hydrogen peroxide and 2,2'-azobis (2-amidinopropane) dihydrochloride with a Hg-Xe arc lamp. The ESR adduct signal was sensitive and very stable. We concluded that instant coffee has high hydroxyl radical and alkyl-oxy radical scavenging activity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404322,31400810,and 11704180)the Postdoctoral Science Foundation of China(Grant No.2013M541635)the Postdoctoral Science Foundation of Jiangsu Province,China(Grant No.1301018B)
文摘Control over the tunneling current in spintronic devices by electrical methods is an interesting topic, which is experiencing a burst of activity. In this paper, we theoretically investigate the transport property of electrons in a spin-diode structure consisting of a single quantum dot(QD) weakly coupled to one nonmagnetic(NM) and one half-metallic ferromagnet(HFM) leads, in which the QD has an artificial atomic nature. By modulating the gate voltage applied on the dot, we observe a pronounced decrease in the current for one bias direction. We show that this rectification is spin-dependent, which stems from the interplay between the spin accumulation and the Coulomb blockade on the quantum dot. The degree of such spin diode behavior is fully and precisely tunable using the gate and bias voltages. The present device can be realized within current technologies and has potential application in molecular spintronics and quantum information processing.
基金Supported by the National Basic Research Program of China under Grant Nos 2014CB921402 and 2015CB921103the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07010300the National Natural Science Foundation of China under Grant No 11574386
文摘We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (PI center) and 13C nuclear spin bath. In previous works, only one dominant decoherence source is studied: P1 electron spin bath for type-Ⅰb diamond; or 13C nuclear spin bath for type-Ⅱa diamond. In general, the thermal fluctuation from both spin baths can be eliminated by the Hahn echo sequence, resulting in a long coherence time (T2 ) of about 400#8. However, in a high-purity type-Ⅱa diamond where 1℃ nuclear spin bath is the dominant decoherence source, dramatic decreases of NV electron spin T2 time caused by P1 electron spin bath are observed under certain magnetic field. We further apply the engineered Hahn echo sequence to confirm the decoherenee mechanism of multiple spin baths and quantitatively estimate the contribution of P1 electron spin bath. Our results are helpful to understand the NV decoherence mechanisms, which will benefit quantum computing and quantum metrology.
基金Project supported by the National Natural Science Foundation of China (Grant No 10134010).
文摘A new GaAs(100) spin polarized electron source with an optical polarimeter, which is employed in the field of polarized electron and gas atom collision, is presented in detail. The apparatus is passive-magnetic-shielded by a box and a cylinder made of nickel-iron-molybdenum soft magnetic alloy without Helmholtz coil arrangement. And a uniformly distributed residual magnetic field of less than 5 × 10^-7T is obtained near the collision area. The spin polarized electron beam is transmitted and focused onto collision point from photocathode by a set of electron optics with more than 25% transmission 95 cm distance through an 1 mm diameter aperture. Construction and operation of the apparatus, such as vacuum and magnetic shielding system, photocathode, laser optics, electron optics and polarimeter are discussed. The polarization of the spin polarized electron beam is determined to be 30.8 ±3.5% measured with a He optical polarimeter.
基金supported by the National Natural Science Foundation of China(Grant No.11404322)the Natural Science Foundation of Huai’an(Grant Nos.HAB202229 and HAB202150)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.22KJD140002)。
文摘A single-molecule magnet is a long-sought-after nanoscale component because it can enable us to miniaturize nonvolatile memory storage devices.The signature of a single-molecule magnet is switching between two bistable magnetic ground states under an external magnetic field.Based on this feature,we theoretically investigate a magnetic-fieldcontrolled reversible resistance change active at low temperatures in a molecular magnetic tunnel junction,which consists of a single-molecule magnet sandwiched between a ferromagnetic electrode and a normal metal electrode.Our numerical results demonstrate that the molecular magnetism orientation can be manipulated by magnetic fields to be parallel/antiparallel to the ferromagnetic electrode magnetization.Moreover,different magnetic configurations can be“read out”based on different resistance states or different spin polarization parameters in the current spectrum,even in the absence of a magnetic field.Such an external magnetic field-controlled resistance state switching effect is similar to that in traditional spin valve devices.The difference between the two systems is that one of the ferromagnetic layers in the original device has been replaced by a magnetic molecule.This proposed scheme provides the possibility of better control of the spin freedom of electrons in molecular electrical devices,with potential applications in future high-density nonvolatile memory devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.11164019 and 11064008)the Inner Mongolia Natural ScienceFoundation,China(Grant Nos.NJZZ11166,NJZY10163,NJZY12202,2011MS0101,2011MS0108,and 2009MS0101)
文摘The effect of Eu3+ ion doping in the La sites of single-crystal La4/3Srs/3Mn2O7 was investigated. Electron spin resonance (ESR) was applied to La4/3Sr5/3Mn2O7 and (Lao.8Euo.2)4/3Sr5/3Mn2O7 single crystals. A phase separation and phase transitions were observed from the ESR spectra data. Between 350 K and 300 K, both paramagnetic resonance (PMR) and anisotropic ferromagnetic resonance (FMR) lines were observed in the ab plane and the c axis direction, suggesting a coexistence of the paramagnetic (PM) phase and the ferromagnetic (FM) phase. The magnetization measurement reveals a spin-glass-like behavior in single-crystal (Lao.8Euo.2)4/3 Sr5/3Mn2O7 below the temperature of spin freezing Tf (- 29.5 K).
文摘This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. The phonon absorption and emission processes as well as the photon absorption and emission processes in all electron transition processes can be explained in an organized manner, and the result can be represented in a diagram that can provide intuition for the quantum dynamics of electrons in a solid. The temperature (T) dependence of electron spin relaxation times (T1) in silicon is T1 ∝ T-1.07 at low temperatures and T1 ∝ T-3.3 at high temperatures for acoustic deformation constant Pad = 1.4 × 10^7 eV and optical deformation constant Pod = 4.0 × 10^17 eV/m. This means that electrons are scattered by the acoustic deformation phonons at low temperatures and optical deformation phonons at high temperatures, respectively. The magnetic field (B) dependence of the relaxation times is T1 ∝ B-2.7 at 100 K and T1 ∝ B-2.3 at 150 K, which nearly agree with the result of Yafet, T1 ∝ B-3.0- B -2.5.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11504194 and 11274189the Project of Shandong-Provincial Higher Educational Science and Technology Program under Grant No J14LJ06the Application Foundation Research Program of Qingdao under Grant No 14-2-4-101-jch
文摘With spin-polarized-dependent band gap renormalization effect taken into account, the energy-dependent evolu- tion of electron spin polarization in GaAs is calculated at room temperature and at a low temperature of 1OK. We consider the exciting light with right-handed circular polarization, and the calculation results show that the degree of electron spin polarization is dependent strongly on the quasi-Fermi levels of |1/2) and |- 1/2) spin conduction bands. At room temperature, the degree of electron spin polarization decreases sharply from 1 near the bottom of the conduction band, and then increases to a stable value above the quasi-Fermi level of the |- 1/2) band. The greater the quasi-Fermi level is, the higher the degree of electron spin polarization with excessive en- ergy above the quasi-Fermi level of the |- 1/2) band can be achieved. At low temperature, the degree of electron spin polarization decreases from 1 sharply near the bottom of the conduction band, and then increases with the excessive energy, and in particular, up to a maximum of i above the quasi-Fermi level of the |1/2) band.
基金supported by the National Basic Research Program of China (Grant No 2009CB929201)the National Natural Science Foundation of China (Grant No 10774179)
文摘A Fe doped rutile TiO2 single crystal is grown in an O2 atmosphere by the floating zone technique. Electron spin resonance (ESR) spectra clearly demonstrate that Fe^3+ ions are substituted for the Ti^4+ ions in the rutile TiO2 matrix. Magnetization measurements reveal that the Fe:TiO2 crystal shows paramagnetic behaviour in a temperature range from 5 K to 350 K. The Fe^3+ ions possess weak magnetic anisotropy with an easy axis along the c axis. The annealed Fe:TiO2 crystal shows spin-glass-like behaviours due to the aggregation of the ferromagnetic clusters.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374103 and 10574143), and the National Basic Research Program of China (Grant No 2001CB309309).
文摘Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the hyperfine Zeeman sublevels, which results from the collision-induced modification δa(S·I) of the hyperfine interaction of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different buffer-gas pressures. The experimental results show that high-field optical pumping and the small change δa(S · I) of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.
基金Supported by the National Natural Science Foundation Program of China under Grant Nos 11274302,11474276 and 61290303
文摘The carrier-density-dependent spin relaxation dynamics for modulation-doped GaAs/Al0.3 Gao,TAs quantum wells is studied using the time-resolved magneto-Kerr rotation measurements. The electron spin relaxation time and its in-plane anisotropy are studied as a function of the optically injected electron density, Moreover, the relative strength of the Rashba and the Dresselhaus spin-rbit coupling fields, and thus the observed spin relaxation time anisotropy, is further tuned by the additional excitation of a 532nm continuous wave laser, demonstrating an effective spin relaxation manipulation via an optical gating method.
文摘ESR saturation power point of the hair of healthy, lung cancer, esophageal cancer, as well as silicosis, tuberculosis and cardiovascular disease were detected. The results show that the positive rate is 1.69%, 85.42%, 90.4%, 20.00%, 27.27% and 0% respectively. There is a significant difference between lung cancer, esophageal cancer and healthy persons (P<0. 001). ESR saturation power point elevates sharply after treatment of lung cancer, 71. 43% of total cases ranged from 7. 9 to 24. 0 (mW), after treatment of esophageal cancer, 71. 23% ranged from 7.9 to 19.9 (mW). All patients with cardiovascular disease were examined to be negative, i. e. , above 10. 0 (mW).
基金supported by the National Natural Science Foundation of China(21801090,21831003 and 21621001)the Jilin Scientific and Technological Development Program(20200802003GH)+2 种基金the Scientific Research Project in the Education Department of Jilin Province(JJKH20211044KJ)the Project on Experimental Technique of Jilin University(409020720202)supported by Users with the Excellence Program of Hefei Science Center CAS(2020HSC-UE002)。
文摘The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.
基金partially supported by the National Natural Science Foundations of China(Grant Nos.11374039 and 11174042)the National Basic Research Program of China(Grant Nos.2011CB922204 and 2013CB632805)
文摘Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot(QD) by the coherent population trapping(CPT) and the electric dipole spin resonance(EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip–flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301202the National Basic Research Program of China under Grant No 2013CB922304+1 种基金the National Natural Science Foundation of China under Grant Nos 91321310 and 11674311the K.C.Wong Education Foundation
文摘Spin noise spectroscopy (SNS) of electrons in n-doped bulk GaAs is studied as functions of temperature and the probe-laser energy. Experimental results show that the SNS signal comes from localized electrons in the donor band. The spin relaxation time of electrons~ which is retrieved from the SNS measurement, depends on the probe light energy and temperature, and it can be ascribed to the variation of electron localization degree.
文摘The influence of the intrinsic spin of electrons on the excitation of transverse electromagnetic surface waves in magnetized plasma is considered. We use a fluid formalism to include quantum corrections due to the Bohm potential and magnetization energy of electrons due to its spin. The effects of both quantum corrections are shown in the dispersion relation for the propagation of surface waves. Also, it is found that the phase and group velocities are increased due to the quantum effects. In the nonrelativistic motion of electrons, the spin effects become noticeable even when the external magnetic field is relatively low.
文摘The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state as a function of n. The paper shows, for the case of the harmonic oscillator taken as an example, that the De Broglie’s dependence of the transition velocity on n is equal to the n-dependence of that velocity calculated with the aid of the uncertainty principle for the energy and time. In the next step the minimal distance parameter provided by the uncertainty principle is applied in calculating the magnetic moment of the electron which effectuates its orbital motion in the magnetic field. This application gives readily the electron spin magnetic moment as well as the quantum of the magnetic flux known in superconductors as its result.