In the previous study of longitudinal spin Seebeck effect(LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbers...In the previous study of longitudinal spin Seebeck effect(LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbersome to be easily integrated into modern electrical circuits. Since the laser can be easily focused into a small region, it will be more convenient and friendly to the integrated circuit. In this paper, we systematically investigate the LSSE and spin Hall magnetoresistance(SMR) of the Pt/Y_3 Fe_5 O_(12) heterostructure under focused laser-heating. We find that the extremely large voltage of inverse spin Hall effect(VISHE) can be obtained by reducing the diameter of laser or increasing the number of light spots.Meanwhile, even under the illumination of the ultraviolet light which will excite the electron from the valence band to the conduction band in yttrium iron garnet(YIG), the magnitude of SMR is nearly constant. It indicates that the spin transport behavior of the adjacent Pt is independent of the electron configuration of YIG. The laser-heating method to generate LSSE will be very promising for modern integrated electronic circuits and will promote the application of spin caloritronics in practice.展开更多
Efficient generation of spin polarization is very important for spintronics and quantum computation. In chiral materials without magnetic order nor spin-orbit coupling, we find a new spin selectivity effect—chiral ph...Efficient generation of spin polarization is very important for spintronics and quantum computation. In chiral materials without magnetic order nor spin-orbit coupling, we find a new spin selectivity effect—chiral phonon activated spin Seebeck(CPASS)effect. Starting with the nonequilibrium distribution of chiral phonons under a temperature gradient, the CPASS coefficients are computed based on the Boltzmann transport theory. With both the phonon-drag and band transport contributions, the spin accumulations generated by the CPASS effect exhibit quadratic dependence on the temperature gradient. The strength of the CPASS effect and the relative magnitude of both contributions are tunable by the chemical potential modulation. The CPASS effect, which gives a promising explanation on the traditional chiral-induced spin selectivity effect, provides opportunities for the exploration of advanced spintronic devices based on chiral materials even in the absence of any magnetic order and spin-orbit coupling.展开更多
Spin currents, which are excited in indium tin oxide(ITO)/yttrium iron garnet(YIG) by the methods of spin pumping and spin Seebeck effect, are investigated through the inverse spin Hall effect(ISHE). It is demonstrate...Spin currents, which are excited in indium tin oxide(ITO)/yttrium iron garnet(YIG) by the methods of spin pumping and spin Seebeck effect, are investigated through the inverse spin Hall effect(ISHE). It is demonstrated that the ISHE voltage can be generated in ITO by spin pumping under both in-plane and out-of-plane magnetization configurations.Moreover, it is observed that the enhancement of spin Hall angle and interfacial spin mixing conductance can be achieved by an appropriate annealing process. However, the ISHE voltage is hardly seen in the presence of a longitudinal temperature gradient. The absence of the longitudinal spin Seebeck effect can be ascribed to the almost equal thermal conductivity of ITO and YIG and specific interface structure, or to the large negative temperature dependent spin mixing conductance.展开更多
The thermoelectric and the thermospin transport properties, including electrical conductivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure of merit, of a parallel coupled double-quantum-dot Ah...The thermoelectric and the thermospin transport properties, including electrical conductivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure of merit, of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique. The periodic Anderson model is used to describe the quantum dot system, the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered. The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects. We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only.展开更多
The electron transport through a Rashba ring with a magnetic flux and driven by a temperature difference is investigated. It is found that the spin interference effect induced by the Rashba spin-orbit interaction and ...The electron transport through a Rashba ring with a magnetic flux and driven by a temperature difference is investigated. It is found that the spin interference effect induced by the Rashba spin-orbit interaction and by the magnetic flux can break the balance between the spin-up and spin-down component currents in the thermally driven charge current and thus result in a spin current. The analytical derivation and numerical calculations reveal that the magnitude, sign, peaks and spin-polarization of the generated spin current can be readily modulated by the system parameters. In particular, with some choices of the parameters, the spin polarization of the generated spin current can reach 100%, that is, a fully spin-polarized thermospin current can be produced. These results may help the use of the spin-dependent Seebeck effect to generate and manipulate a spin current.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604265,51471134,51572222,and 11704386)the Fundamental Research Funds for the Central Universities,China(Grant Nos.3102018zy044 and 3102017jc01001)
文摘In the previous study of longitudinal spin Seebeck effect(LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbersome to be easily integrated into modern electrical circuits. Since the laser can be easily focused into a small region, it will be more convenient and friendly to the integrated circuit. In this paper, we systematically investigate the LSSE and spin Hall magnetoresistance(SMR) of the Pt/Y_3 Fe_5 O_(12) heterostructure under focused laser-heating. We find that the extremely large voltage of inverse spin Hall effect(VISHE) can be obtained by reducing the diameter of laser or increasing the number of light spots.Meanwhile, even under the illumination of the ultraviolet light which will excite the electron from the valence band to the conduction band in yttrium iron garnet(YIG), the magnitude of SMR is nearly constant. It indicates that the spin transport behavior of the adjacent Pt is independent of the electron configuration of YIG. The laser-heating method to generate LSSE will be very promising for modern integrated electronic circuits and will promote the application of spin caloritronics in practice.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12374044, 11904173, 11890703, and 12275133)supported by the Jiangsu Specially-Appointed Professor Program+1 种基金supported by the National Key R&D Project from Ministry of Science and Technology of China (Grant No. 2022YFA1203100)the “Shuangchuang” Doctor Program of Jiangsu Province (Grant No.JSS-CBS20210341)。
文摘Efficient generation of spin polarization is very important for spintronics and quantum computation. In chiral materials without magnetic order nor spin-orbit coupling, we find a new spin selectivity effect—chiral phonon activated spin Seebeck(CPASS)effect. Starting with the nonequilibrium distribution of chiral phonons under a temperature gradient, the CPASS coefficients are computed based on the Boltzmann transport theory. With both the phonon-drag and band transport contributions, the spin accumulations generated by the CPASS effect exhibit quadratic dependence on the temperature gradient. The strength of the CPASS effect and the relative magnitude of both contributions are tunable by the chemical potential modulation. The CPASS effect, which gives a promising explanation on the traditional chiral-induced spin selectivity effect, provides opportunities for the exploration of advanced spintronic devices based on chiral materials even in the absence of any magnetic order and spin-orbit coupling.
基金Project supported by the National Key Basic Research Project of China(Grant No.2016YFA0300600)Chinese Academy of Sciences(Grant No.KJCX2-YW-W24)+1 种基金the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11604375)the Laboratory of Microfabrication of Institute of Physics,Chinese Academy of Sciences
文摘Spin currents, which are excited in indium tin oxide(ITO)/yttrium iron garnet(YIG) by the methods of spin pumping and spin Seebeck effect, are investigated through the inverse spin Hall effect(ISHE). It is demonstrated that the ISHE voltage can be generated in ITO by spin pumping under both in-plane and out-of-plane magnetization configurations.Moreover, it is observed that the enhancement of spin Hall angle and interfacial spin mixing conductance can be achieved by an appropriate annealing process. However, the ISHE voltage is hardly seen in the presence of a longitudinal temperature gradient. The absence of the longitudinal spin Seebeck effect can be ascribed to the almost equal thermal conductivity of ITO and YIG and specific interface structure, or to the large negative temperature dependent spin mixing conductance.
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China (Grant No. F200939)
文摘The thermoelectric and the thermospin transport properties, including electrical conductivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure of merit, of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique. The periodic Anderson model is used to describe the quantum dot system, the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered. The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects. We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only.
基金supported by National Key Projects for Research and Development of China with Grant No. 2021YFA1400400the National Natural Science Foundation of China with Grants No. 12225407 and 12074174+2 种基金China Postdoctoral Science Foundation with Grants No. 2022M711569 and 2022T150315Jiangsu Province Excellent Postdoctoral Program with Grant No. 20220ZB5Fundamental Research Funds for the Central Universities
基金Project supported by the National Natural Science Foundation of China (No.11404142)
文摘The electron transport through a Rashba ring with a magnetic flux and driven by a temperature difference is investigated. It is found that the spin interference effect induced by the Rashba spin-orbit interaction and by the magnetic flux can break the balance between the spin-up and spin-down component currents in the thermally driven charge current and thus result in a spin current. The analytical derivation and numerical calculations reveal that the magnitude, sign, peaks and spin-polarization of the generated spin current can be readily modulated by the system parameters. In particular, with some choices of the parameters, the spin polarization of the generated spin current can reach 100%, that is, a fully spin-polarized thermospin current can be produced. These results may help the use of the spin-dependent Seebeck effect to generate and manipulate a spin current.