Structured light with inhomogeneous phase,amplitude,and polarization spatial distributions that represent an infinite-dimensional space of eigenstates for light as the ideal carrier can provide a structured combinatio...Structured light with inhomogeneous phase,amplitude,and polarization spatial distributions that represent an infinite-dimensional space of eigenstates for light as the ideal carrier can provide a structured combination of photonic spin and orbital angular momentum(OAM).Photonic spin angular momentum(SAM)interactions with matter have long been studied,whereas the photonic OAM has only recently been discovered,receiving attention in the past three decades.Although controlling polarization(i.e.,SAM)alone can provide useful information about the media with which the light interacts,light fields carrying both OAM and SAM may provide additional information,permitting new sensing mechanisms and light–matter interactions.We summarize recent developments in controlling photonic angular momentum(AM)using complex structured optical fields.Arbitrarily oriented photonic SAM and OAM states may be generated through careful engineering of the spatial and temporal structures of optical fields.Moreover,we discuss potential applications of specifically engineered photonic AM states in optical tweezers,directional coupling,and optical information transmission and processing.展开更多
Emerging applications based on optical beams carrying orbital angular momentum will likely require photonic integrated devices and circuits for miniaturization,improved performance and enhanced functionality.This pape...Emerging applications based on optical beams carrying orbital angular momentum will likely require photonic integrated devices and circuits for miniaturization,improved performance and enhanced functionality.This paper reviews the state-of-the-art in the field of orbital angular momentum of light,reports recent developments in silicon integrated orbital angular momentum emitters,and discusses the applications potentials and challenges in applying orbital angular momentum of light in optical communications,quantum information systems,and optical sensing,imaging,and manipulation systems.展开更多
The noble gas nuclear polarization samples has the prospects of the application which has attracted much interest. The noble gas nuclear samples with high degree of the polarized densities are used as ideal nuclear po...The noble gas nuclear polarization samples has the prospects of the application which has attracted much interest. The noble gas nuclear samples with high degree of the polarized densities are used as ideal nuclear polarization samples in nuclear and elementary particle physics, because these samples are inert chemically and because展开更多
The optical rotation technique arose in the 1990 s.Optical tweezer brought an ideal platform for research on the angular momentum of laser beams.For decades,the optical rotation technique has been widely applied in la...The optical rotation technique arose in the 1990 s.Optical tweezer brought an ideal platform for research on the angular momentum of laser beams.For decades,the optical rotation technique has been widely applied in laboratory optical manipulation and the fields of biology and optofluidics.Recently,it has attracted much attention for its potential in the classical and quantum regimes.In this work,we review the progress of experiments and applications of optically induced rotation.First,we introduce the basic exploration of angular momentum.Then,we cover the development and application of optical rotation induced by orbital angular momentum,and the spin angular momentum is presented.Finally,we elaborate on recent applications of the optical rotation technique in high vacuum.As precise optical manipulation in a liquid medium enters its maturity,optical tweezers in high vacuum open a new path for the high-speed micro-rotor.展开更多
基金supported by the National Natural Science Foundation of China(Nos.92050202,61805142,and 61875245)Shanghai Science and Technology Committee(No.19060502500)Shanghai Natural Science Foundation(No.20ZR1437600).
文摘Structured light with inhomogeneous phase,amplitude,and polarization spatial distributions that represent an infinite-dimensional space of eigenstates for light as the ideal carrier can provide a structured combination of photonic spin and orbital angular momentum(OAM).Photonic spin angular momentum(SAM)interactions with matter have long been studied,whereas the photonic OAM has only recently been discovered,receiving attention in the past three decades.Although controlling polarization(i.e.,SAM)alone can provide useful information about the media with which the light interacts,light fields carrying both OAM and SAM may provide additional information,permitting new sensing mechanisms and light–matter interactions.We summarize recent developments in controlling photonic angular momentum(AM)using complex structured optical fields.Arbitrarily oriented photonic SAM and OAM states may be generated through careful engineering of the spatial and temporal structures of optical fields.Moreover,we discuss potential applications of specifically engineered photonic AM states in optical tweezers,directional coupling,and optical information transmission and processing.
文摘Emerging applications based on optical beams carrying orbital angular momentum will likely require photonic integrated devices and circuits for miniaturization,improved performance and enhanced functionality.This paper reviews the state-of-the-art in the field of orbital angular momentum of light,reports recent developments in silicon integrated orbital angular momentum emitters,and discusses the applications potentials and challenges in applying orbital angular momentum of light in optical communications,quantum information systems,and optical sensing,imaging,and manipulation systems.
基金Project supported by the National Natural Science Foundation of China
文摘The noble gas nuclear polarization samples has the prospects of the application which has attracted much interest. The noble gas nuclear samples with high degree of the polarized densities are used as ideal nuclear polarization samples in nuclear and elementary particle physics, because these samples are inert chemically and because
基金supported by the National Natural Science Foundation of China(Nos.11304282 and 10947104)the National Program for Special Support of Top-Notch Young Professionals,China+1 种基金the Fundamental Research Fund for the Central Universities,China(No.2018XZZX001-08)the Major Scientific Research Project of Zhejiang Lab,China(No.2019MB0AD01)。
文摘The optical rotation technique arose in the 1990 s.Optical tweezer brought an ideal platform for research on the angular momentum of laser beams.For decades,the optical rotation technique has been widely applied in laboratory optical manipulation and the fields of biology and optofluidics.Recently,it has attracted much attention for its potential in the classical and quantum regimes.In this work,we review the progress of experiments and applications of optically induced rotation.First,we introduce the basic exploration of angular momentum.Then,we cover the development and application of optical rotation induced by orbital angular momentum,and the spin angular momentum is presented.Finally,we elaborate on recent applications of the optical rotation technique in high vacuum.As precise optical manipulation in a liquid medium enters its maturity,optical tweezers in high vacuum open a new path for the high-speed micro-rotor.