We study an anisotropic spin cluster of 3 spin S=1/2 particles with antiferromagnetic exchange interactionwith non-uniform coupling constants.A time-dependent magnetic field is applied to control the time evolution of...We study an anisotropic spin cluster of 3 spin S=1/2 particles with antiferromagnetic exchange interactionwith non-uniform coupling constants.A time-dependent magnetic field is applied to control the time evolution of thecluster.It is well known that for an odd number of sites a spin cluster qubit can be defined in terms of the ground statedoublet.The universal one-qubit logic gate can be constructed from the time evolution operator of the non-autonomousmany-body system,and the six basic one-qubit gates can be realized by adjusting the applied time-dependent magneticfield.展开更多
We report the study of a low temperature cluster glass state in 5% Mn-doped UGa3 heavy fermion compound. This compound transforms from a paramagnetic state to a spin-cluster glass state, which is confirmed by measurin...We report the study of a low temperature cluster glass state in 5% Mn-doped UGa3 heavy fermion compound. This compound transforms from a paramagnetic state to a spin-cluster glass state, which is confirmed by measuring the dc susceptibility and magnetization. The ac susceptibility exhibits a frequency-dependent peak around Tf, which provides direct evidence of the cluster glass state. By analyzing the field-dependent magnetization and frequency-dependent ac susceptibility in detail, we deduce that this compound forms a spin-cluster glass state below Tf.展开更多
The cluster state is an indispensable resource for one-way quantum computing (lWQC). We propose a practical scheme for constructing cluster states among nuclear spins in nitrogen-vacancy defect centres (NV centres...The cluster state is an indispensable resource for one-way quantum computing (lWQC). We propose a practical scheme for constructing cluster states among nuclear spins in nitrogen-vacancy defect centres (NV centres) in different diamonds. The entanglement of nuclear spins within an NV centre is made by hyperfine coupling via electron spin, and the entanglement between remote NV centres is accomplished using the parity projection of emitted photons. We discus the possibility to build large-scale nuclear-spin cluster states with diamonds.展开更多
On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the ma...On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the major results reported in this paper contain the following two respects: explicit relationships between the coefficients of the real and complex Kramers doublets have been derived by using two types of the expressions of the principal components of the g tensors in real and complex orbital representations obtained in the first paper; the use of these relationships of the real and complex orbital coefficients has carried out a series of mathematical demonstrations on the agreement of the real and complex orbital methods .展开更多
A systematic investigation of the magnetic and transport properties of Ti doped La_(0.67)Ca_(0.33)MnO_3 was reported. The Ti substitution for Mn ions results in a reduction in ferromagnetism and conductivity. The meta...A systematic investigation of the magnetic and transport properties of Ti doped La_(0.67)Ca_(0.33)MnO_3 was reported. The Ti substitution for Mn ions results in a reduction in ferromagnetism and conductivity. The metal-insulator transition temperature is close to Curie temperature which decreases from 274 to 82 K as x increases from 0 to 0.17. The most important effect of Ti doping is to introduce spin clusters in the samples due to the distortion of local lattice and the inhomogeneous magnetic structure induced primarily by the random distribution of Mn ions. A maximum magnetoresistance ratio as large as 90% in 1 T at 122 K was obtained for the sample with x=0.055, which is four times larger than that obtained for LCMO sample at 272 K. There is a remarkable field-history dependent MR in the cooling process for the doped samples while such phenomenon disappears in the warming run. The resistivity follows well the variable range hopping behavior in paramagnetic state. Both the size effect and spin dependent hopping of carriers between the spin clusters should be considered in this system.展开更多
There are some concepts that are accepted in our daily life but are not trivial in physics. One of them is the cluster property that means there exist no relations between two events which are sufficiently separated. ...There are some concepts that are accepted in our daily life but are not trivial in physics. One of them is the cluster property that means there exist no relations between two events which are sufficiently separated. In the works recently published by the author, the extensive and quantitative examination has been made about the violation of cluster property in the correlation function of the spin operator for the quantum spin system. These works have shown that, when we include the symmetry breaking interaction, the effect by the violation is proportional to the inverse of the system size. Therefore this effect is tinny since the system size is quite large. In order to find the effect due to the violation even when the size is large, we propose a new system where additional spins couple with the spin system on the square lattice, where the coupling constant between these systems being assumed to be small. Applying the perturbation theory, we obtain the effective Hamiltonian for the additional system. This Hamiltonian includes Curie-Weiss model that is induced by the violation of the cluster property. Then we find that this effective Hamiltonian has the factor which is the inverse of the system size. Since Curie-Weiss model, which is known to be exactly soluble, has to contain this factor so that the thermodynamical properties are well-defined, the essential factor for the Hamiltonian is determined by the coupling and the strength of the symmetry breaking interaction. Our conclusion is, therefore, that it is possible to observe the effect by the violation of the cluster property at the inverse temperature whose order is given by these parameters.展开更多
The geometries, electronic structures of pure carbon clusters were investigated in the range of C 3 to C 6 size. To obtain accurate results, the STO double zeta basis sets with a polarization function are selected. Th...The geometries, electronic structures of pure carbon clusters were investigated in the range of C 3 to C 6 size. To obtain accurate results, the STO double zeta basis sets with a polarization function are selected. The main focuses are on the new geometry, electronic structures of carbon clusters, such as the three dimensional structure for C 4, C 5 and so on. The clusters are found to have more isomers corresponding to different geometries and spin multiplicities close to their ground states. We find that the spin multiplicity of the ground state or close to ground state of odd numbered linear chain is 1. But in even numbered linear chains, the spin multiplicity is 3. In odd numbered cyclic structure without branch chain, the spin multiplicity of the ground state or close ground state is 3, and that of even numbered is 1. But the three dimensional structure disagree those principles.展开更多
This paper deals with the types and specifications of combing roller covering for spinning pureramie noil rotor-spun yarns.A handling mode combining Fuzzy Decision-making and FuzzyCluster Analysis has been used for an...This paper deals with the types and specifications of combing roller covering for spinning pureramie noil rotor-spun yarns.A handling mode combining Fuzzy Decision-making and FuzzyCluster Analysis has been used for analyzing the experimental results.It is shown that,with regard to the specifications of the sawtooth clothing of the combing rol-ler,large working angle,large tooth pitch,fine tooth shape,short tooth height,smooth finish andgood wearability are of benefit to improving the spinning stability and the spun yarn properties.The pinned combing roller,however,regardless of its complicated process of production,is sug-gested to be preferred for spinning the pure ramie noil rotor-spun yarns.The handling mode used in this work is efficient in improving the reliability and objectivity ofthe conclusions and can be used for solving the similar problems.展开更多
In this paper, single crystal EPR study of a new binuclear copper (Ⅱ) cluster compound-[Cu2(α-C(10) H7CH2CO2)4 (DMF)2]·[DMF]2·H2O](DMF= (CH3)2NCOH) at room temperature is reported. The lines of △Ms=±...In this paper, single crystal EPR study of a new binuclear copper (Ⅱ) cluster compound-[Cu2(α-C(10) H7CH2CO2)4 (DMF)2]·[DMF]2·H2O](DMF= (CH3)2NCOH) at room temperature is reported. The lines of △Ms=±1 allowing transition and △M=2 forbiding transition are shown in EPR spectra. The experimental data are consistent with the calculated results by the leastsquares fitting prograrn in three principal planes of g and D tensors. The spin Hamiltonian parameters are as follows: gx=2. 1482, gy=2. 0529 ,gz=2. 3905, D= 0. 348 cm ̄(-1) and E =0. 01 cm-1. The diagrams of the energy levels have been obtained when the magnetic field is oriented to three principal axes. The polycrystal EPR spectra have been measured at room temperature and 77K, respectively.and the parameters of these spectra are given (g∥= 2. 094, g⊥= 2. 425, D= 0. 37 cm-1,E=0). The parameter of the isotropic magnetic exchange interaction J=-254cm-1 is determined, and that of the anisotropic magnetic exchange J1=-153 cm-1 is calculated. The average magnetic susceptibility of the polycrystal sample χ= 1. 39 ×10-6 (c. g. s) has been measured by Faraday powder method. Thus the average magnetic mornent μ=1. 43 B. M. can be calculated. It is shown that the exchange interactions between the metal ions of the binuclear copper(Ⅱ) cluster compound are confirmed antiferromagnetic In nature.展开更多
Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd a...Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.展开更多
文摘We study an anisotropic spin cluster of 3 spin S=1/2 particles with antiferromagnetic exchange interactionwith non-uniform coupling constants.A time-dependent magnetic field is applied to control the time evolution of thecluster.It is well known that for an odd number of sites a spin cluster qubit can be defined in terms of the ground statedoublet.The universal one-qubit logic gate can be constructed from the time evolution operator of the non-autonomousmany-body system,and the six basic one-qubit gates can be realized by adjusting the applied time-dependent magneticfield.
基金supported by the Natural Science Foundation of China Academy of Engineering Physic(Grant No.2014A0301013)the National Natural Science Foundation of China(Grant Nos.11304291 and 11504342)
文摘We report the study of a low temperature cluster glass state in 5% Mn-doped UGa3 heavy fermion compound. This compound transforms from a paramagnetic state to a spin-cluster glass state, which is confirmed by measuring the dc susceptibility and magnetization. The ac susceptibility exhibits a frequency-dependent peak around Tf, which provides direct evidence of the cluster glass state. By analyzing the field-dependent magnetization and frequency-dependent ac susceptibility in detail, we deduce that this compound forms a spin-cluster glass state below Tf.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10774042 and 10875039)the Chinese Academy of Sciences and the National Fundamental Research Program of China(Grant No.10974225)
文摘The cluster state is an indispensable resource for one-way quantum computing (lWQC). We propose a practical scheme for constructing cluster states among nuclear spins in nitrogen-vacancy defect centres (NV centres) in different diamonds. The entanglement of nuclear spins within an NV centre is made by hyperfine coupling via electron spin, and the entanglement between remote NV centres is accomplished using the parity projection of emitted photons. We discus the possibility to build large-scale nuclear-spin cluster states with diamonds.
文摘On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the major results reported in this paper contain the following two respects: explicit relationships between the coefficients of the real and complex Kramers doublets have been derived by using two types of the expressions of the principal components of the g tensors in real and complex orbital representations obtained in the first paper; the use of these relationships of the real and complex orbital coefficients has carried out a series of mathematical demonstrations on the agreement of the real and complex orbital methods .
文摘A systematic investigation of the magnetic and transport properties of Ti doped La_(0.67)Ca_(0.33)MnO_3 was reported. The Ti substitution for Mn ions results in a reduction in ferromagnetism and conductivity. The metal-insulator transition temperature is close to Curie temperature which decreases from 274 to 82 K as x increases from 0 to 0.17. The most important effect of Ti doping is to introduce spin clusters in the samples due to the distortion of local lattice and the inhomogeneous magnetic structure induced primarily by the random distribution of Mn ions. A maximum magnetoresistance ratio as large as 90% in 1 T at 122 K was obtained for the sample with x=0.055, which is four times larger than that obtained for LCMO sample at 272 K. There is a remarkable field-history dependent MR in the cooling process for the doped samples while such phenomenon disappears in the warming run. The resistivity follows well the variable range hopping behavior in paramagnetic state. Both the size effect and spin dependent hopping of carriers between the spin clusters should be considered in this system.
文摘There are some concepts that are accepted in our daily life but are not trivial in physics. One of them is the cluster property that means there exist no relations between two events which are sufficiently separated. In the works recently published by the author, the extensive and quantitative examination has been made about the violation of cluster property in the correlation function of the spin operator for the quantum spin system. These works have shown that, when we include the symmetry breaking interaction, the effect by the violation is proportional to the inverse of the system size. Therefore this effect is tinny since the system size is quite large. In order to find the effect due to the violation even when the size is large, we propose a new system where additional spins couple with the spin system on the square lattice, where the coupling constant between these systems being assumed to be small. Applying the perturbation theory, we obtain the effective Hamiltonian for the additional system. This Hamiltonian includes Curie-Weiss model that is induced by the violation of the cluster property. Then we find that this effective Hamiltonian has the factor which is the inverse of the system size. Since Curie-Weiss model, which is known to be exactly soluble, has to contain this factor so that the thermodynamical properties are well-defined, the essential factor for the Hamiltonian is determined by the coupling and the strength of the symmetry breaking interaction. Our conclusion is, therefore, that it is possible to observe the effect by the violation of the cluster property at the inverse temperature whose order is given by these parameters.
文摘The geometries, electronic structures of pure carbon clusters were investigated in the range of C 3 to C 6 size. To obtain accurate results, the STO double zeta basis sets with a polarization function are selected. The main focuses are on the new geometry, electronic structures of carbon clusters, such as the three dimensional structure for C 4, C 5 and so on. The clusters are found to have more isomers corresponding to different geometries and spin multiplicities close to their ground states. We find that the spin multiplicity of the ground state or close to ground state of odd numbered linear chain is 1. But in even numbered linear chains, the spin multiplicity is 3. In odd numbered cyclic structure without branch chain, the spin multiplicity of the ground state or close ground state is 3, and that of even numbered is 1. But the three dimensional structure disagree those principles.
文摘This paper deals with the types and specifications of combing roller covering for spinning pureramie noil rotor-spun yarns.A handling mode combining Fuzzy Decision-making and FuzzyCluster Analysis has been used for analyzing the experimental results.It is shown that,with regard to the specifications of the sawtooth clothing of the combing rol-ler,large working angle,large tooth pitch,fine tooth shape,short tooth height,smooth finish andgood wearability are of benefit to improving the spinning stability and the spun yarn properties.The pinned combing roller,however,regardless of its complicated process of production,is sug-gested to be preferred for spinning the pure ramie noil rotor-spun yarns.The handling mode used in this work is efficient in improving the reliability and objectivity ofthe conclusions and can be used for solving the similar problems.
文摘In this paper, single crystal EPR study of a new binuclear copper (Ⅱ) cluster compound-[Cu2(α-C(10) H7CH2CO2)4 (DMF)2]·[DMF]2·H2O](DMF= (CH3)2NCOH) at room temperature is reported. The lines of △Ms=±1 allowing transition and △M=2 forbiding transition are shown in EPR spectra. The experimental data are consistent with the calculated results by the leastsquares fitting prograrn in three principal planes of g and D tensors. The spin Hamiltonian parameters are as follows: gx=2. 1482, gy=2. 0529 ,gz=2. 3905, D= 0. 348 cm ̄(-1) and E =0. 01 cm-1. The diagrams of the energy levels have been obtained when the magnetic field is oriented to three principal axes. The polycrystal EPR spectra have been measured at room temperature and 77K, respectively.and the parameters of these spectra are given (g∥= 2. 094, g⊥= 2. 425, D= 0. 37 cm-1,E=0). The parameter of the isotropic magnetic exchange interaction J=-254cm-1 is determined, and that of the anisotropic magnetic exchange J1=-153 cm-1 is calculated. The average magnetic susceptibility of the polycrystal sample χ= 1. 39 ×10-6 (c. g. s) has been measured by Faraday powder method. Thus the average magnetic mornent μ=1. 43 B. M. can be calculated. It is shown that the exchange interactions between the metal ions of the binuclear copper(Ⅱ) cluster compound are confirmed antiferromagnetic In nature.
文摘Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.