We theoretically investigate spin transport in the elliptical ring and the circular ring with Rashba spin-orbit interaction. It is shown that when Rashba spin-orbit interaction is relatively weak, a single circular ri...We theoretically investigate spin transport in the elliptical ring and the circular ring with Rashba spin-orbit interaction. It is shown that when Rashba spin-orbit interaction is relatively weak, a single circular ring can not realize spin flip, however an elliptical ring may work as a spin-inverter at this time, and the influence of the defect of the geometry is not obvious. Howerver if a giant Rashba spin-orbit interaction strength has been obtained, a circular ring can work as a spin-inverter with a high stability.展开更多
The bulk,pristine sp^(2) carbons,such as graphite,carbon nanotubes,and graphene,are usually assumed to be typical diamagnetic materials.However,over the past two decades,there have been many reports about the ferromag...The bulk,pristine sp^(2) carbons,such as graphite,carbon nanotubes,and graphene,are usually assumed to be typical diamagnetic materials.However,over the past two decades,there have been many reports about the ferromagnetism in these sp^(2) carbon materials,which have attracted intense interest for basic research and potential applications.In this review,we focus on the evidence and developments of the emergent ferromagnetism in sp^(2) carbon revealed by nine kinds of experimental methods:magnetic force microscopy(MFM),magnetization measurements with physical property measurement system(PPMS),X-ray magnetic circular dichroism(XMCD),scanning tunneling microscopy(STM),miniaturized magnetic particle inspection(MPI),anomalous Hall effect(AHE),mechanical deflection of carbon nanotube cantilevers,magnetoresistance,and spin-related devices(spin field effect transistor and spin memory).The advantages,conclusions,challenges,and future of these methods are discussed.The ferromagnetism in sp^(2) carbon will open a door to explore exotic physical phenomena and lay the basis for the development of integrated circuit of spintronics,which is fundamentally different from charge-based conventional electronics.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11504016)
文摘We theoretically investigate spin transport in the elliptical ring and the circular ring with Rashba spin-orbit interaction. It is shown that when Rashba spin-orbit interaction is relatively weak, a single circular ring can not realize spin flip, however an elliptical ring may work as a spin-inverter at this time, and the influence of the defect of the geometry is not obvious. Howerver if a giant Rashba spin-orbit interaction strength has been obtained, a circular ring can work as a spin-inverter with a high stability.
基金supported by Major Nanoprojects of Ministry of Science and Technology of China(No.2018YFA0208403)the National Natural Science Foundation of China(No.21973021)+2 种基金The GBA National Institute for Nanotechnology Innovation,Guangdong,China(No.2020B0101020003)Chinese Academy of Sciences Project for Young Scientists in Basic Research(No.YSBR-030)Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB36000000 and NBSDC-DB-18).
文摘The bulk,pristine sp^(2) carbons,such as graphite,carbon nanotubes,and graphene,are usually assumed to be typical diamagnetic materials.However,over the past two decades,there have been many reports about the ferromagnetism in these sp^(2) carbon materials,which have attracted intense interest for basic research and potential applications.In this review,we focus on the evidence and developments of the emergent ferromagnetism in sp^(2) carbon revealed by nine kinds of experimental methods:magnetic force microscopy(MFM),magnetization measurements with physical property measurement system(PPMS),X-ray magnetic circular dichroism(XMCD),scanning tunneling microscopy(STM),miniaturized magnetic particle inspection(MPI),anomalous Hall effect(AHE),mechanical deflection of carbon nanotube cantilevers,magnetoresistance,and spin-related devices(spin field effect transistor and spin memory).The advantages,conclusions,challenges,and future of these methods are discussed.The ferromagnetism in sp^(2) carbon will open a door to explore exotic physical phenomena and lay the basis for the development of integrated circuit of spintronics,which is fundamentally different from charge-based conventional electronics.