期刊文献+
共找到126,144篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of spin–orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
1
作者 Lian Liu Wen-Xiang Chen +1 位作者 Rui-Qiang Wang Liang-Bin Hu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期384-390,共7页
Influence of spin–orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls is investigated theoretically.It is shown that the Rashba spin–orbit coup... Influence of spin–orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls is investigated theoretically.It is shown that the Rashba spin–orbit coupling can enhance significantly the spin-flip scattering of charge carriers from a nanosized sharp domain wall whose extension is much smaller than the carrier's Fermi wavelength.When there are more than one domain wall presented in a magnetic semiconductor nanowire,not only the spin-flip scattering of charge carriers from the domain walls but the quantum interference of charge carriers in the intermediate domain regions between neighboring domain walls may play important roles on spin-polarized electronic transport,and in such cases the influences of the Rashba spin–orbit coupling will depend sensitively both on the domain walls' width and the domain walls' separation. 展开更多
关键词 magnetic semiconductor nanowires domain wall spin-orbit coupling spin-polarized electronic transport
下载PDF
Spin-polarized electronic properties of NiHe_(0.25) under pressure 被引量:1
2
作者 伞晓娇 刘志明 +3 位作者 马琰铭 崔田 刘冰冰 邹广田 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第3期1201-1206,共6页
This paper studies the effects of He atom on the spin-polarized electronic properties of nickel under pressures using ab initio pseudopotential plan-wave method. Under high pressures, the compound of NiHeo.25 can exis... This paper studies the effects of He atom on the spin-polarized electronic properties of nickel under pressures using ab initio pseudopotential plan-wave method. Under high pressures, the compound of NiHeo.25 can exist and helium- bubble can not create in Ni. A pressure-induced ferromagnetic to paramagnetic phase transition has been predicted in NiHeo.25 at about 218 GPa. It is found that under pressures, the magnetic property of Ni atoms is more strongly affected by He atom than by H atom and that the behaviour of He atom in Ni are completely different from that of H atom, like the bonding characteristics and the electron transfer. 展开更多
关键词 plane-wave method interaction potential electronic structure
下载PDF
Spin-Polarized Electron Injection in Co/Cu/Fe Sandwich Structure 被引量:1
3
作者 WANG Shou-guo CHEN Yan-Xue +6 位作者 WANG Zhi-he CHEN Qiang CHEN Jmg-Lin SHEN Hong-Lie LIU Yi-Hua XIE Shi-jie MEI Liang-mo 《Chinese Physics Letters》 SCIE CAS CSCD 2000年第8期603-605,共3页
A material asymmetry Co/Cu/Fe junction structure has been prepared for studying the spin-polarized electron injection at 77K.The sample performance was demonstrated to be analogous to that of a bipolar transistor.The ... A material asymmetry Co/Cu/Fe junction structure has been prepared for studying the spin-polarized electron injection at 77K.The sample performance was demonstrated to be analogous to that of a bipolar transistor.The maximal value of the output pulse voltage between Cu and Fe layers could reach the order of severalμV when the bias current between Co and Cu layers was 10μA.The interface roughness,photograph of material,magnetic loop and injection characteristic curves have been measured.Some important points on this topic have been discussed. 展开更多
关键词 CO/CU electron ROUGHNESS
下载PDF
Co and Phthalocyanine Overlayers on the Quantum-Well System Co(001)/Cu: Spin-Polarized Electron Reflection Experiments
4
作者 Etienne Urbain Guillaume Garreau +4 位作者 Patrick Wetzel Samy Boukari Eric Beaurepaire Martin Bowen Wolfgang Weber 《Journal of Modern Physics》 2018年第5期976-984,共9页
The influence of a Co or phthalocyanine (Pc) molecular overlayer on the properties of quantum-well resonances (QWR) in Cu layers atop Co(001) is studied by means of spin-polarized electron reflection. For Co atoms and... The influence of a Co or phthalocyanine (Pc) molecular overlayer on the properties of quantum-well resonances (QWR) in Cu layers atop Co(001) is studied by means of spin-polarized electron reflection. For Co atoms and Pc molecules, an energy shift of the QWR-induced signal is observed with increasing coverage and is attributed to a variation of the electron reflection phase at the Cu/Co and Cu/Pc interface. For Co we find a linear energy shift in the Cu QWR energy position with increasing coverage down to the sub-monolayer regime. This shows that the phase accumulation model remains accurate within the sub-monolayer regime of a discontinuous interface. An opposite sign in the energy shift between Co and Pc overlayers could reflect an opposite impact on the Cu surface work function of overlayer adsorption. 展开更多
关键词 QUANTUM-WELL Resonances spin-polarized electron REFLECTION
下载PDF
A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics 被引量:1
5
作者 Qian Wang Yanyan Li +7 位作者 Yong Lin Yuping Sun Chong Bai Haorun Guo Ting Fang Gaohua Hu Yanqing Lu Desheng Kong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期120-133,共14页
Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composite... Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin.Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces.However,chemical modifications are typically needed for reliable bonding,which can alter their original properties.To overcome this limitation,this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes.In this physical process,soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface,which forms an interpenetrating network with the hydrogel.The microfoam-enabled bonding strategy is generally compatible with various polymers.The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids.These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels.They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing mus-cle contractions.Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems. 展开更多
关键词 Stretchable electronics Epidermal electronics Silver nanowire Conductive nanocomposites HYDROGEL
下载PDF
Investigation on taste characteristics and sensory perception of soft-boiled chicken during oral processing based on electronic tongue and electronic nose 被引量:1
6
作者 Na Xu Xianming Zeng +3 位作者 Peng Wang Xing Chen Xinglian Xu Minyi Han 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期313-326,共14页
The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual... The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual oral environment.To explore the oral processing characteristics of soft-boiled chicken,the sensory properties,texture,particle size,viscosity,characteristic values of electronic nose and tongue of different chicken samples were investigated.The correlation analysis showed that the physical characteristics especially the cohesiveness,springiness,resilience of the sample determined oral processing behavior.The addition of chicken skin played a role in lubrication during oral processing.The particle size of the bolus was heightened at the early stage,and the fluidity was enhanced in the end,which reduced the chewing time to the swallowing point and raised the aromatic compounds signal of electronic nose.But the effect of chicken skin on chicken thigh with relatively high fat content,was opposite in electronic nose,which had a certain masking effect on the perception of umami and sweet taste.In conclusion,fat played a critical role in chicken oral processing and chicken thigh had obvious advantages in comprehensive evaluation of soft-boiled chicken,which was more popular among people. 展开更多
关键词 Oral processing CHICKEN electronic tongue electronic nose
下载PDF
Sweat-permeable electronic patches by designing threedimensional liquid diodes 被引量:1
7
作者 Kangdi Guan Di Chen +1 位作者 Qilin Hua Guozhen Shen 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期2-5,共4页
Wearable electronics face a significant challenge related to the limited permeability of electronic materials/devices.This issue results in sweat accumulation across the interface of the device and skin following a sp... Wearable electronics face a significant challenge related to the limited permeability of electronic materials/devices.This issue results in sweat accumulation across the interface of the device and skin following a specific period of use[1−3].Not only does it bring about discomfort for users regarding thermos-physiology,but it also has a detrimental effect on interface adhesion and signal quality,thus hindering exact sig-nal monitoring during prolonged periods[4−6]. 展开更多
关键词 DIODES electronIC interface
下载PDF
3D‑Printed Carbon‑Based Conformal Electromagnetic Interference Shielding Module for Integrated Electronics 被引量:3
8
作者 Shaohong Shi Yuheng Jiang +5 位作者 Hao Ren Siwen Deng Jianping Sun Fangchao Cheng Jingjing Jing Yinghong Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期87-101,共15页
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni... Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics. 展开更多
关键词 3D printing Carbon-based nanoparticles Conformal electromagnetic interference shielding Integrated electronics
下载PDF
An Environment‑Tolerant Ion‑Conducting Double‑Network Composite Hydrogel for High‑Performance Flexible Electronic Devices 被引量:2
9
作者 Wenchao Zhao Haifeng Zhou +3 位作者 Wenkang Li Manlin Chen Min Zhou Long Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期352-369,共18页
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i... High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications. 展开更多
关键词 Ionic liquids Double-network hydrogels Temperature tolerance Multifunctionality Flexible electronic devices
下载PDF
Valence electronic engineering of superhydrophilic Dy-evoked Ni-MOF outperforming RuO_(2) for highly efficient electrocatalytic oxygen evolution 被引量:1
10
作者 Zhiyang Huang Miao Liao +6 位作者 Shifan Zhang Lixia Wang Mingcheng Gao Zuyang Luo Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期244-252,I0007,共10页
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ... Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts. 展开更多
关键词 Dy@Ni-MOF Dy incorporation electronic interaction SUPERHYDROPHILICITY Oxygen evolution reaction
下载PDF
Laboratory observation of electron energy distribution near three-dimensional magnetic nulls 被引量:1
11
作者 何任川 徐田超 +7 位作者 杨肖易 肖池阶 张祖煜 袁瑞鑫 王晓钢 郭志彬 余修铭 盖跃 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期46-52,共7页
The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topol... The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths. 展开更多
关键词 electron acceleration EEDF 3D magnetic null magnetic reconnection
下载PDF
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
12
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang Min Gyu Kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST Acidic oxygen evolution reaction electronic structure engineering DURABILITY Reaction barrier
下载PDF
Advances in Wireless,Batteryless,Implantable Electronics for Real‑Time,Continuous Physiological Monitoring
13
作者 Hyeonseok Kim Bruno Rigo +2 位作者 Gabriella Wong Yoon Jae Lee Woon‑Hong Yeo 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期254-302,共49页
This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design co... This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses. 展开更多
关键词 Implantable electronics Biomedical systems Batteryless devices Wireless electronics Physiological signal monitoring
下载PDF
Growth mechanism and characteristics of electron drift instability in Hall thruster with different propellant types
14
作者 陈龙 阚子晨 +4 位作者 高维富 段萍 陈俊宇 檀聪琦 崔作君 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期511-522,共12页
The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In re... The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons. 展开更多
关键词 Hall thruster electron drift instability axial electron mobility particle-in-cell simulation
下载PDF
Tuning the electronic conductance of REH_(x)(RE=Nd,Ce,Pr)by structural deformation
15
作者 Shangshang Wang Weijin Zhang +6 位作者 Jirong Cui Shukun Liu Hong Wen Jianping Guo Teng He Hujun Cao Ping Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期440-445,I0010,共7页
Hydride ion(H-)conductors have drawn much attention due to their potential applications in hydrideion-based devices.Rare earth metal hydrides(REH_(x))have fast H-conduction which,unfortunately,is accompanied by detrim... Hydride ion(H-)conductors have drawn much attention due to their potential applications in hydrideion-based devices.Rare earth metal hydrides(REH_(x))have fast H-conduction which,unfortunately,is accompanied by detrimental electron conduction preventing their application as ion conductors.Here,REH_(x)(RE=Nd,Ce,and Pr)with varied grain sizes,rich grain boundaries,and defects have been prepared by ball milling and subsequent sintering.The electronic conductivity of the ball-milled REH_(x)samples can be reduced by 2-4 orders of magnitude compared with the non-ball-milled samples.The relationship of electron conduction and miscrostructures in REH_(x)is studied and discussed based on experimental data and previously-proposed classical and quantum theories.The H-conductivity of all REH_(x)is about 10^(-4)to 10^(-3)S cm^(-1)at room temperature,showing promise for the development of H-conductors and their applications in clean energy storage and conversion. 展开更多
关键词 Hydride ion conduction electron conduction Nanosized grain Crystal defect electron scattering
下载PDF
Probing the Nucleation and Growth Kinetics of Bismuth Nanoparticles via In-situ Transmission Electron Microscopy
16
作者 王浪 李超凡 +3 位作者 RAN Maojin YUAN Manman 胡执一 LI Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期877-887,共11页
The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme... The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles. 展开更多
关键词 bismuth nanoparticles crystal growth transmission electron microscopy in-situ electron microscopy
下载PDF
TiO_(2)Electron Transport Layer with p-n Homojunctions for Efficient and Stable Perovskite Solar Cells
17
作者 Wenhao Zhao Pengfei Guo +8 位作者 Jiahao Wu Deyou Lin Ning Jia Zhiyu Fang Chong Liu Qian Ye Jijun Zou Yuanyuan Zhou Hongqiang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期1-14,共14页
Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport... Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport and thus recombination loss at buried interface.Herein,we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO_(2)ETL to accelerate electron transport in PSCs,through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude.Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO_(2)ETL,but the fabrication of perovskite films with larger-grain and the less-trap-states.The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs,favoring for the reduced voltage deficit of PSCs.Benefiting from these merits,the formamidinium lead iodide(FAPbI_(3))PSCs employing such ETLs deliver a champion efficiency of 25.50%,along with much-improved device stability under harsh conditions,i.e.,maintain over 95%of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h,as well as mixed-cation PSCs with a champion efficiency of 22.02%and over 3000 h of ambient storage under humidity stability of 40%.Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics. 展开更多
关键词 electron transport layer p-n homojunction electron mobility Buried interface Perovskite solar cells
下载PDF
Analysis of the electron transfer pathway in small laccase by EPR and UV-vis spectroscopy coupled with redox titration
18
作者 Lu Yu Aokun Liu +3 位作者 Jian Kuang Ruotong Wei Zhiwen Wang Changlin Tian 《Magnetic Resonance Letters》 2024年第3期52-59,共8页
Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer betwe... Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications. 展开更多
关键词 electron paramagnetic resonance Redox titration electron transfer Reduction Potential Small laccase
下载PDF
Design of the electron cyclotron emission diagnostic on EXL-50 spherical torus
19
作者 王嵎民 谢奇峰 +10 位作者 陶仁义 张辉 薄晓坤 孙恬恬 伦秀春 陈琳 谭伟强 郭栋 邓必河 刘敏胜 the EXL-50 Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期53-60,共8页
The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D ele... The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D electron temperature profile measurement,in the frequency range of 4-40 GHz.The system is composed of five subsystems,each covering a different frequency band,including the C-band(4-8 GHz),X-band(8-12 GHz),Ku-band(12-18 GHz),K-band(18-26.5 GHz)and Kα-band(26.4-40 GHz).The system uses heterodyne detection to analyze the received signals.The K-band and Kα-band subsystems are located horizontally in the equatorial plane of the EXL-50,while the C-band,X-band and Ku-band subsystems are located under the vacuum vessel of the EXL-50.To direct the microwaves from the plasma to the antennas for the horizontal detection subsystems,a quasi-optical system has been developed.For the vertical detection subsystems,the antennas are directly attached to the port located beneath the torus at R=700 mm,which is also the magnetic axis of the torus.The system integration,bench testing and initial experimental results will be thoroughly discussed,providing a comprehensive understanding of the ECE system s performance and capabilities. 展开更多
关键词 electron cyclotron emission spherical torus(ST) EXL-50 energetic electrons
下载PDF
Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field
20
作者 樊光琦 杨志杰 +4 位作者 孙烽豪 郑金梅 韩云天 黄明谦 刘情操 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期248-252,共5页
Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)la... Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process. 展开更多
关键词 nonsequential double ionization correlated electronelectron momentum distribution energy sharing of electrons orthogonally polarized two-color field laser field semiclassical ensemble models
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部