期刊文献+
共找到172篇文章
< 1 2 9 >
每页显示 20 50 100
Fortuitous benefits of activity-based rehabilitation in stem cell-based therapy for spinal cord repair: enhancing graft survival 被引量:3
1
作者 Dong Hoon Hwang Hae Young Shin Byung Gon Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1589-1590,共2页
Traumatic injuries to spinal cord elicit diverse signaling pathways leading to unselective and complex pathological outcomes:death of multiple classes of neural cells,formation of cystic cavities and glial scars,disr... Traumatic injuries to spinal cord elicit diverse signaling pathways leading to unselective and complex pathological outcomes:death of multiple classes of neural cells,formation of cystic cavities and glial scars,disruption of axonal connections,and demyelination of spared axons,all of which can contribute more or less to debilitating functional impairments found in patients with spinal cord injury. 展开更多
关键词 NSCs Fortuitous benefits of activity-based rehabilitation in stem cell-based therapy for spinal cord repair enhancing graft survival STEM cell
下载PDF
Olfactory ensheathing cells for spinal cord repair: crucial differences between subpopulations of the glia 被引量:2
2
作者 Jenny A.K.Ekberg James A.St John 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1395-1396,共2页
OECs for spinal cord repair: Is repairing the iniured spinal cord by olfactory ensheathing cell (OEC) transplantation pos- sible? A recent human trial in which a paralysed man regained some function after transpla... OECs for spinal cord repair: Is repairing the iniured spinal cord by olfactory ensheathing cell (OEC) transplantation pos- sible? A recent human trial in which a paralysed man regained some function after transplantation of partially purified OECs suggests that this therapy may be a successful approach (Ta- bakow et al., 2014). In another human trial in which olfactory mucosa lamina propria was transplanted, patients recovered some motor and sensory function (Wang et al., 2015). While these results show promise, it is clear that improvements are needed to provide patients with increased functional output. Strategies to improve the therapeutic use of OECs may include improving the purification of the OECs used for transplantation, using them in combination with growth factors to combat the inhibitory environment and improve anon growth, the use of nerve bridges, advanced physiotherapy and the use of exo- skeleton robotics to reinforce functional connections. Of all these approaches, it is probably is primarily addressed to ensure crucial that the purity of OECs consistency in outcomes. 展开更多
关键词 cell Olfactory ensheathing cells for spinal cord repair crucial differences between subpopulations of the glia
下载PDF
Silkworm silk biomaterials for spinal cord repair: promise for combinatorial therapies
3
作者 Anna Varone Ann Marie Rajnicek Wenlong Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第5期809-810,共2页
Background:Traumatic injury to the adult mammalian spinal cord results in minimal axonal regrowth,cystic cavity formation at the injury site,poor functional recovery and there is no cure available.Due to the complex ... Background:Traumatic injury to the adult mammalian spinal cord results in minimal axonal regrowth,cystic cavity formation at the injury site,poor functional recovery and there is no cure available.Due to the complex nature of spinal cord injury(SCI),a combination of therapeutic strategies may offer the most promise for successful regeneration(Ahuja et al.,2017). 展开更多
关键词 SCI Figure Silkworm silk biomaterials for spinal cord repair promise for combinatorial therapies
下载PDF
Targeting acute inflammation to complement spinal cord repair
4
作者 Faith H.Brennan Marc J.Ruitenberg 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1596-1598,共3页
Immune effector mechanisms play key roles in the progressive(secondary)neurodegenerative changes that follow spinal cord injury(SCI).In our recent paper(Brennan et al.,2015),we showed that the inflammatory respo... Immune effector mechanisms play key roles in the progressive(secondary)neurodegenerative changes that follow spinal cord injury(SCI).In our recent paper(Brennan et al.,2015),we showed that the inflammatory response to SCI includes rapid and robust activation of the innate immune complement system, with tissue levels of complement component 5a (C5a - an activation product generated by the proteolysis of complement factor 5 (C5)) peaking 12 to 24 hours post-iniurv. 展开更多
关键词 SCI Targeting acute inflammation to complement spinal cord repair
下载PDF
Advances in 3D printing scaffolds for peripheral nerve and spinal cord injury repair 被引量:2
5
作者 Juqing Song Baiheng Lv +2 位作者 Wencong Chen Peng Ding Yong He 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期264-300,共37页
Because of the complex nerve anatomy and limited regeneration ability of natural tissue,the current treatment effect for long-distance peripheral nerve regeneration and spinal cord injury(SCI)repair is not satisfactor... Because of the complex nerve anatomy and limited regeneration ability of natural tissue,the current treatment effect for long-distance peripheral nerve regeneration and spinal cord injury(SCI)repair is not satisfactory.As an alternative method,tissue engineering is a promising method to regenerate peripheral nerve and spinal cord,and can provide structures and functions similar to natural tissues through scaffold materials and seed cells.Recently,the rapid development of 3D printing technology enables researchers to create novel 3D constructs with sophisticated structures and diverse functions to achieve high bionics of structures and functions.In this review,we first outlined the anatomy of peripheral nerve and spinal cord,as well as the current treatment strategies for the peripheral nerve injury and SCI in clinical.After that,the design considerations of peripheral nerve and spinal cord tissue engineering were discussed,and various 3D printing technologies applicable to neural tissue engineering were elaborated,including inkjet,extrusion-based,stereolithography,projection-based,and emerging printing technologies.Finally,we focused on the application of 3D printing technology in peripheral nerve regeneration and spinal cord repair,as well as the challenges and prospects in this research field. 展开更多
关键词 peripheral nerve regeneration spinal cord repair 3D printing construct bionic structure bionic function
下载PDF
From single to combinatorial therapies in spinal cord injuries for structural and functional restoration
6
作者 Ernesto Doncel-Pérez Gabriel Guízar-Sahagún Israel Grijalva-Otero 《Neural Regeneration Research》 SCIE CAS 2025年第3期660-670,共11页
Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychoso... Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord. 展开更多
关键词 neural regeneration NEUROPROTECTION spinal cord injury repair spinal cord injury treatments structural restoration of spinal cord injury
下载PDF
Knockdown of polypyrimidine tract binding protein facilitates motor function recovery after spinal cord injury 被引量:1
7
作者 Ri-Yun Yang Rui Chai +7 位作者 Jing-Ying Pan Jing-Yin Bao Pan-Hui Xia Yan-Kai Wang Ying Chen Yi Li Jian Wu Gang Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期396-403,共8页
After spinal cord injury(SCI),a fibroblast-and microglia-mediated fibrotic scar is formed in the lesion core,and a glial scar is formed around the fibrotic scar as a res ult of the activation and proliferation of astr... After spinal cord injury(SCI),a fibroblast-and microglia-mediated fibrotic scar is formed in the lesion core,and a glial scar is formed around the fibrotic scar as a res ult of the activation and proliferation of astrocytes.Simultaneously,a large number of neuro ns are lost in the injured area.Regulating the dense glial scar and re plenishing neurons in the injured area are essential for SCI repair.Polypyrimidine tra ct binding protein(PTB),known as an RNA-binding protein,plays a key role in neurogenesis.Here,we utilized short hairpin RNAs(shRNAs)and antisense oligonucleotides(ASOs)to knock down PTB expression.We found that reactive spinal astrocytes from mice were directly reprogrammed into motoneuron-like cells by PTB downregulation in vitro.In a mouse model of compressioninduced SCI,adeno-associated viral shRNA-mediated PTB knockdown replenished motoneuron-like cells around the injured area.Basso Mouse Scale scores and forced swim,inclined plate,cold allodynia,and hot plate tests showed that PTB knockdown promoted motor function recovery in mice but did not improve sensory perception after SCI.Furthermore,ASO-mediated PTB knockdown improved motor function resto ration by not only replenishing motoneuron-like cells around the injured area but also by modestly reducing the density of the glial scar without disrupting its overall structure.Together,these findings suggest that PTB knockdown may be a promising therapeutic strategy to promote motor function recovery during spinal cord repair. 展开更多
关键词 antisense oligonucleotides ASTROCYTES glial scar motoneuron-like cells motor function NEUROGENESIS neuron-like cells polypyrimidine tract binding protein short hairpin RNAs spinal cord repair
下载PDF
Circulating exosomal lncRNA contributes to the pathogenesis of spinal cord injury in rats
8
作者 Jian-An Li Ming-Peng Shi +6 位作者 Lin Cong Ming-Yu Gu Yi-Heng Chen Si-Yi Wang Zhen-Hua Li Chun-Fang Zan Wan-Fu Wei 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期889-894,共6页
Exosome-derived long non-coding RNAs(lncRNAs)are extensively engaged in recovery and repair of the injured spinal cord,through different mechanisms.However,to date no study has systematically evaluated the differentia... Exosome-derived long non-coding RNAs(lncRNAs)are extensively engaged in recovery and repair of the injured spinal cord,through different mechanisms.However,to date no study has systematically evaluated the differentially expressed lncRNAs involved in the development of spinal cord injury.Thus,the aim of this study was to identify key circulating exosome-derived lncRNAs in a rat model of spinal cord injury and investigate their potential actions.To this end,we established a rat model of spinal cord hemisection.Circulating exosomes were extracted from blood samples from spinal cord injury and control(sham)rats and further identified through Western blotting and electron microscopy.RNA was isolated from the exosomes and sequenced.The enrichment analysis demonstrated that there were distinctively different lncRNA and mRNA expression patterns between the two groups.Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis and Gene Ontology(GO)functional analysis were performed to determine the possible involvements of upregulated and downregulated lncRNAs in various pathways and different biological processes,as well as their cellular locations and molecular functions.Furthermore,quantitative reverse transcription-polymerase chain reaction showed that the expression of five lncRNAs––ENSRN0T00000067908,XR_590093,XR_591455,XR_360081,and XR_346933––was increased,whereas the expression of XR_351404,XR_591426,XR_353833,XR_590076,and XR_590719 was decreased.Of note,these 10 lncRNAs were at the center of the lncRNA-miRNA-mRNA coexpression network,which also included 198 mRNAs and 41 miRNAs.Taken together,our findings show that several circulating exosomal lncRNAs are differentially expressed after spinal cord injury,suggesting that they may be involved in spinal cord injury pathology and pathogenesis.These lncRNAs could potentially serve as targets for the clinical diagnosis and treatment of spinal cord injury. 展开更多
关键词 EXOSOME inflammation lncRNA MICROENVIRONMENT miRNA mRNA spinal cord injury spinal cord repair
下载PDF
Repair of spinal cord injury by neural stem cells modified with BDNF gene in rats 被引量:13
9
作者 Wei LI Wen-Qin CAI Cheng-Ren LI 《Neuroscience Bulletin》 SCIE CAS CSCD 2006年第1期34-40,共7页
Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene we... Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene were transplanted into the complete transection site of spinal cord at the lumbar 4 (L4) level in rats. Motor function of rats' hind limbs was observed and HE and X-gal immunoeytochemical staining, in situ hybridization, and retrograde HRP tracing were also performed. Results BDNF-NSCs survived and integrated well with host spinal cord. In the transplant group, some X-gal positive, NF-200 positive, GFAP positive, BDNF positive, and BDNF mRNA positive cells, and many NF-200 positive nerve fibers were observed in the injury site. Retrograde HRP tracing through sciatic nerve showed some HRP positive cells and nerve fibers near the rostral side of the injury one month after transplant and with time, they increased in number. Examinations on rats' motor function and behavior demonstrated that motor function of rats' hind limbs improved better in the transplant group than the injury group. Conclusion BDNF-NSCs can survive, differentiate, and partially integrate with host spinal cord, and they significantly ameliorate rats' motor function of hind limbs, indicating their promising role in repairing spinal cord injury. 展开更多
关键词 genetic modification neural stem cell spinal cord injury repair
下载PDF
Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation 被引量:5
10
作者 Ya-jing Zhou Jian-min Liu +3 位作者 Shu-ming Wei Yun-hao Zhang Zhen-hua Qu Shu-bo Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1305-1311,共7页
Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair u... Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells stem cell transplantation propofol spinal cord injury repair neuroprotection anesthesia neural regeneration
下载PDF
Upregulated Ras/Raf/ERK1/2 signaling pathway:a new hope in the repair of spinal cord injury 被引量:6
11
作者 Tao Liu Fu-jiang Cao +2 位作者 Dong-dong Xu Yun-qiang Xu Shi-qing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期792-796,共5页
An increasing number of studies report that the Ras/Raf/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway has a death-promoting apoptotic function in neural cells. We hypothesized that the Ras/Raf... An increasing number of studies report that the Ras/Raf/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway has a death-promoting apoptotic function in neural cells. We hypothesized that the Ras/Raf/ERK1/2 signaling pathway may be abnormally regulated in rat injured spinal cord models. The weight drop method was used to establish rat spinal cord injury at T9. Western blot analysis and immunohistochemical staining revealed Ras expression was dramatically elevated, and the phosphorylations of A-Raf, B-Raf and C-Raf were all upregulated in the injured spinal cord. Both mitogen-activated protein kinase kinase 1/2 and ERK1/2, which belong to the Ras/Raf signaling kinases, were upregulated. These results indicate that Ras/Raf/ ERK1/2 signaling may be upregulated in injured spinal cord and are involved in recovery after spinal cord injury. 展开更多
关键词 nerve regeneration Ras/Raf/Erkl/2 signaling pathway spinal cord injury APOPTOSIS repair regulation INHIBITION neural regeneration
下载PDF
Application and implications of polyethylene glycol-fusion as a novel technology to repair injured spinal cords 被引量:3
12
作者 George D.Bittner Kiran K.Rokkappanavar Jean D.Peduzzi 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1406-1408,共3页
Conventional vs. polyethylene glycol (PEG)-fusion tech- nologies to repair severed spinal axons: Most spinal cord injuries (SCIs) involve cutor crush-severance of spinal tract axons in the central nervous system ... Conventional vs. polyethylene glycol (PEG)-fusion tech- nologies to repair severed spinal axons: Most spinal cord injuries (SCIs) involve cutor crush-severance of spinal tract axons in the central nervous system (CNS). Clinical out- comes after CNS axonal severance is very poor because proximal segments of CNS axons lack a suitable environment for outgrowth (Kakulas, 1999; Fitch and Silver, 2008; Rowland et al., 2008; Kwon et al., 2010) and therefore do not naturally regenerate (Ramon y Caial, 1928). Current strategies to try to increase behavioral recovery after SCI are focused on en- hancing the environment for axonal outgrowth. 展开更多
关键词 PEG Application and implications of polyethylene glycol-fusion as a novel technology to repair injured spinal cords
下载PDF
Role of endogenous Schwann cells in tissue repair after spinal cord injury 被引量:1
13
作者 Shu-xin Zhang Fengfa Huang +1 位作者 Mary Gates Eric G. Holmberg 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第2期177-185,共9页
Schwann cells are glial cells of peripheral nervous system, responsible for axonal myelination and ensheathing, as well as tissue repair following a peripheral nervous system injury. They are one of several cell types... Schwann cells are glial cells of peripheral nervous system, responsible for axonal myelination and ensheathing, as well as tissue repair following a peripheral nervous system injury. They are one of several cell types that are widely studied and most commonly used for cell transplantation to treat spinal cord injury, due to their intrinsic characteristics including the ability to secrete a variety of neurotrophic factors. This mini review summarizes the recent findings of endogenous Schwann cells after spinal cord injury and discusses their role in tissue repair and axonal regeneration. After spinal cord injury, numerous endogenous Schwann cells migrate into the lesion site from the nerve roots, involving in the construction of newly formed repaired tissue and axonal myelination. These invading Schwann cells also can move a long distance away from the injury site both rostrally and caudally. In addition, Schwann cells can be induced to migrate by minimal insults (such as scar ablation) within the spinal cord and integrate with astrocytes under certain circumstances. More importantly, the host Schwann cells can be induced to migrate into spinal cord by transplantation of different cell types, such as exogenous Schwann cells, olfactory ensheathing cells, and bone marrow-derived stromal stem cells. Migration of endogenous Schwann cells following spinal cord injury is a common natural phenomenon found both in animal and human, and the myelination by Schwann cells has been examined effective in signal conduction electrophysiologically. Therefore, if the inherent properties of endogenous Schwann cells could be developed and utilized, it would offer a new avenue for the restoration of injured spinal cord. 展开更多
关键词 neural regeneration spinal cord injury Schwann cells spinal cord injury tissue repair axonalregeneration MYELINATION rat scar ablation ASTROCYTES cell transplantation rose Bengal olfactoryensheathing cells bone marrow stromal cell grant-supported paper NEUROREGENERATION
下载PDF
Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy 被引量:16
14
作者 Fei Yin Chunyang Meng +5 位作者 Rifeng Lu Lei Li Ying Zhang Hao Chen Yonggang Qin Li Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第18期1665-1671,共7页
Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are kno... Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as- sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur- thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro- filament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes- enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells spinal cord ischemia/reperfusioninjury axonal growth AUTOPHAGY repair NSFC grant neural regeneration
下载PDF
Who is who after spinal cord injury and repair? Can the brain stem descending motor pathways take control of skilled hand motor function?
15
作者 Guillermo García-Alías V.Reggie Edgerton 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第11期1735-1736,共2页
Over the last years,anatomical,electrophysiological and genetic studies have carefully dissected the pathways connecting the brain and the spinal cord.Lawrence and Kuypers(1968)described the organization of the desc... Over the last years,anatomical,electrophysiological and genetic studies have carefully dissected the pathways connecting the brain and the spinal cord.Lawrence and Kuypers(1968)described the organization of the descending motor pathways in the non-human primate spinal cord.Although there are some differences between species regarding the precise anatomical location of each spinal pathway and the selective connectivity onto spinal interneurons and motoneurons, the pattern of organization described is con- served among the mammalian spinal cord (Courtine et al., 2007). Based on their description, the major descending motor pathways are grouped depending on their anatomical origin and their termi- nal distribution pattern in the spinal grey matter. The motor cortex projects corticospinal axons to the spinal cord, which mostly run in the contralateral cord and innervate the mid and dorsal grey matter neurons. 展开更多
关键词 stem Who is who after spinal cord injury and repair
下载PDF
Repairing the injured spinal cord: sprouting versus regeneration. Is this a realistic match?
16
作者 Karim Fouad Caitlin Hurd 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第5期462-462,共1页
The article by Meves and Zheng (2014) is addressing a continu- ous shift in the field of spinal cord injury (SCI) research that has occurred over the last century. Before that, the spinal cord was viewed as "hard... The article by Meves and Zheng (2014) is addressing a continu- ous shift in the field of spinal cord injury (SCI) research that has occurred over the last century. Before that, the spinal cord was viewed as "hard wired" and treatment considerations were based on observations that axons in the periphery were able to regenerate, but those in the central nervous system (CNS) were not (David and Aguayo, 1981). 展开更多
关键词 this sprouting versus regeneration SCI repairing the injured spinal cord Is this a realistic match
下载PDF
Editor's Choice—Application of tissue-engineered materials in the repair of spinal cord injury
17
《Neural Regeneration Research》 SCIE CAS CSCD 2011年第19期1456-1456,共1页
The development of tissue-engineered technology brings hope to the treatment of spinal cord injury. Preparation of a tissue-engineered spinal cord stent with three-dimensional bionic structure has important value in t... The development of tissue-engineered technology brings hope to the treatment of spinal cord injury. Preparation of a tissue-engineered spinal cord stent with three-dimensional bionic structure has important value in the construction of tissue-engineered spinal cord and the repair of spinal cord injury. Acellular scaffolds can be produced with chemical extraction, 展开更多
关键词 Application of tissue-engineered materials in the repair of spinal cord injury Editor’s Choice
下载PDF
Repair mechanism of astrocytes and non-astrocytes in spinal cord injury
18
作者 Xiang-Yun Liu Jian-Wei Guo +2 位作者 Jian-Qiang Kou Yuan-Liang Sun Xiu-Jun Zheng 《World Journal of Clinical Cases》 SCIE 2020年第5期854-863,共10页
BACKGROUND Spinal cord injury(SCI)is a destructive disease that incurs huge personal and social costs,and there is no effective treatment.Although the pathogenesis and treatment mechanism of SCI has always been a stro... BACKGROUND Spinal cord injury(SCI)is a destructive disease that incurs huge personal and social costs,and there is no effective treatment.Although the pathogenesis and treatment mechanism of SCI has always been a strong scientific focus,the pathogenesis of SCI is still under investigation.AIM To determine the key genes based on the modularization of in-depth analysis,in order to identify the repair mechanism of astrocytes and non-astrocytes in SCI.METHODS Firstly,the differences between injured and non-injured spinal cord of astrocyte(HA),injured and non-injured spinal cord of non-astrocyte(FLOW),injured spinal cord of non-injured astrocyte(HA)and non-injured spinal cord of nonastrocyte(FLOW),and non-injured spinal cord of astrocyte(HA)and nonastrocyte(FLOW)were analyzed.The total number of differentially expressed genes was obtained by merging the four groups of differential results.Secondly,the genes were co-expressed and clustered.Then,the enrichment of GO function and KEGG pathway of module genes was analyzed.Finally,non-coding RNA,transcription factors and drugs that regulate module genes were predicted using hypergeometric tests.RESULTS In summary,we obtained 19 expression modules involving 5216 differentially expressed genes.Among them,miR-494,XIST and other genes were differentially expressed in SCI patients,and played an active regulatory role in dysfunction module,and these genes were recognized as the driving genes of SCI.Enrichment results showed that module genes were significantly involved in the biological processes of inflammation,oxidation and apoptosis.Signal pathways such as NF-kappa B/A20,AMPK and MAPK were significantly regulated.In addition,non-coding RNA pivot(including miR-136-5p and let-7d-5p,etc.)and transcription factor pivot(including NFKB1,MYC,etc.)were identified as significant regulatory dysfunction modules.CONCLUSION Overall,this study uncovered a co-expression network of key genes involved in astrocyte and non-astrocyte regulation in SCI.These findings helped to reveal the core dysfunction modules,potential regulatory factors and driving genes of the disease,and to improve our understanding of its pathogenesis. 展开更多
关键词 ASTROCYTE Non-astrocyte spinal cord injury repair mechanism Dysfunction module Module genes
下载PDF
Neural stem cell transplantation in a double-layer collagen membrane with unequal pore sizes for spinal cord injury repair 被引量:7
19
作者 Ning Yuan Wei Tian +3 位作者 Lei Sun Runying Yuan Jianfeng Tao Dafu Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第10期1014-1019,共6页
A novel double-layer collagen membrane with unequal pore sizes in each layer was designed and tested in this study. The inner, loose layer has about 100-μm-diameter pores, while the outer, compact layer has about 10-... A novel double-layer collagen membrane with unequal pore sizes in each layer was designed and tested in this study. The inner, loose layer has about 100-μm-diameter pores, while the outer, compact layer has about 10-μm-diameter pores. In a rat model of incomplete spinal cord injury, a large number of neural stem cells were seeded into the loose layer, which was then adhered to the injured side, and the compact layer was placed against the lateral side. The results showed that the transplantation of neural stem cells in a double-layer collagen membrane with unequal pore sizes promoted the differentiation of neural stem cells, attenuated the pathological lesion, and signiifcantly improved the motor function of the rats with incomplete spinal cord injuries. These experimental ifndings suggest that the transplantation of neural stem cells in a double-lay-er collagen membrane with unequal pore sizes is an effective therapeutic strategy to repair an injured spinal cord. 展开更多
关键词 nerve regeneration spinal cord injury COLLAGEN scaffolds neural stem cells cell trans-plantation nerve repair neural regeneration
下载PDF
Review of Thoracic Endovascular Aneurysm Repair (TEVAR), Spinal Cord Ischemia (SCI), Cerebrospinal Fluid (CSF) Drainage and Blood Pressure (BP) Augmentation
20
作者 R. Englund 《Surgical Science》 2017年第2期73-81,共9页
The object of this review is to examine the role of TEVAR in causing SCI. The anatomy and physiology of blood flow to the spinal cord is examined. The role of auto regulation of blood flow within the spinal cord is al... The object of this review is to examine the role of TEVAR in causing SCI. The anatomy and physiology of blood flow to the spinal cord is examined. The role of auto regulation of blood flow within the spinal cord is also examined. This review examines the reported results from the scientific literature of the effect of thoracic aortic aneurysm repair on spinal cord blood flow. In the light of the-se findings several conclusions can reasonably be reached. These conclusions are that the development of SCI can reasonably be predicted based on complexity and extent of the TEVAR procedure performed and BP augmentation and CSF drainage can significantly reduce the impact of SCI. 展开更多
关键词 THORACIC ENDOVASCULAR Aortic ANEURYSM repair spinal cord Ischemia Means Systemic Arterial Blood Pressure CEREBROspinal Fluid Drainage COLLATERAL Network
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部