After spinal cord injury,there is an extensive infiltration of immune cells,which exacerbates the injury and leads to further neural degeneration.Therefore,a major aim of current research involves targeting the immune...After spinal cord injury,there is an extensive infiltration of immune cells,which exacerbates the injury and leads to further neural degeneration.Therefore,a major aim of current research involves targeting the immune response as a treatment for spinal cord injury.Although much research has been performed analyzing the complex inflammatory process following spinal cord injury,there remain major discrepancies within previous literature regarding the timeline of local cytokine regulation.The objectives of this study were to establish an overview of the timeline of cytokine regulation for 2 weeks after spinal cord injury,identify sexual dimorphisms in terms of cytokine levels,and determine local cytokines that significantly change based on the severity of spinal cord injury.Rats were inflicted with either a mild contusion,moderate contusion,severe contusion,or complete transection,7 mm of spinal cord centered on the injury was harvested at varying times post-injury,and tissue homogenates were analyzed with a Cytokine/Chemokine 27-Plex assay.Results demonstrated pro-inflammatory cytokines including tumor necrosis factorα,interleukin-1β,and interleukin-6 were all upregulated after spinal cord injury,but returned to uninjured levels within approximately 24 hours post-injury,while chemokines including monocyte chemoattractant protein-1 remained upregulated for days post-injury.In contrast,several anti-inflammatory cytokines and growth factors including interleukin-10 and vascular endothelial growth factor were downregulated by 7 days post-injury.After spinal cord injury,tissue inhibitor of metalloproteinase-1,which specifically affects astrocytes involved in glial scar development,increased more than all other cytokines tested,reaching 26.9-fold higher than uninjured rats.After a mild injury,11 cytokines demonstrated sexual dimorphisms;however,after a severe contusion only leptin levels were different between female and male rats.In conclusion,pro-inflammatory cytokines initiate the inflammatory process and return to baseline within hours post-injury,chemokines continue to recruit immune cells for days post-injury,while anti-inflammatory cytokines are downregulated by a week post-injury,and sexual dimorphisms observed after mild injury subsided with more severe injuries.Results from this work define critical chemokines that influence immune cell infiltration and important cytokines involved in glial scar development after spinal cord injury,which are essential for researchers developing treatments targeting secondary damage after spinal cord injury.展开更多
AIM To investigate the feasibility and safety of secondary endoscopic submucosal dissection(ESD) for residual or locally recurrent gastric tumors. METHODS Between 2010 and 2017, 1623 consecutive patients underwent ESD...AIM To investigate the feasibility and safety of secondary endoscopic submucosal dissection(ESD) for residual or locally recurrent gastric tumors. METHODS Between 2010 and 2017, 1623 consecutive patients underwent ESD for gastric neoplasms at a single tertiary referral center. Among these, 28 patients underwent secondary ESD for a residual or locally recurrent tumor. Our analysis compared clinicopathologic factors between primary ESD and secondary ESD groups. RESULTS The en bloc resection and curative rate of resection of secondary ESD were 92.9% and 89.3%, respectively. The average procedure time of secondary ESD was significantly longer than primary ESD(78.2 min vs 55.1 min, P = 0.004), and the adverse events rate was not significantly different but trended slightly higher in the secondary ESD group compared to the primary ESD group(10.7% vs 3.8%, P = 0.095). Patients who received secondary ESD had favorable outcomes without severe adverse events. During a mean follow-up period, no local recurrence occurred in patients who received secondary ESD. CONCLUSION Secondary ESD of residual or locally recurrent gastric tumors appears to be a feasible and curative treatment though it requires greater technical efficiency and longer procedure time.展开更多
Spinal cord injury(SCI)is a devastating and disabling medical condition generally caused by a traumatic event(primary injury).This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate...Spinal cord injury(SCI)is a devastating and disabling medical condition generally caused by a traumatic event(primary injury).This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate neural damage but also exacerbate initial damage(secondary injury).The alterations that occur in the spinal cord have not only local but also systemic consequences and virtually all organs and tissues of the body incur important changes after SCI,explaining the progression and detrimental consequences related to this condition.Psychoneuroimmunoendocrinology(PNIE)is a growing area of research aiming to integrate and explore the interactions among the different systems that compose the human organism,considering the mind and the body as a whole.The initial traumatic event and the consequent neurological disruption trigger immune,endocrine,and multisystem dysfunction,which in turn affect the patient's psyche and well-being.In the present review,we will explore the most important local and systemic consequences of SCI from a PNIE perspective,defining the changes occurring in each system and how all these mechanisms are interconnected.Finally,potential clinical approaches derived from this knowledge will also be collectively presented with the aim to develop integrative therapies to maximize the clinical management of these patients.展开更多
Spinal cord injury (SCI) is a devastating type of neurological trauma with limited therapeutic op- portunities. The pathophysiology of SCI involves primary and secondary mechanisms of injury. Among all the secondary...Spinal cord injury (SCI) is a devastating type of neurological trauma with limited therapeutic op- portunities. The pathophysiology of SCI involves primary and secondary mechanisms of injury. Among all the secondary injury mechanisms, the inflammatory response is the major contrib- utor and results in expansion of the lesion and further loss of neurologic function. Meanwhile, the inflammation directly and indirectly dominates the outcomes of SCI, including not only pain and motor dysfunction, but also preventingneuronal regeneration. Microglia and macrophages play very important roles in secondary injury. Microglia reside in spinal parenchyma and survey the microenvironment through the signals of injury or infection. Macrophages are derived from monocytes recruited to injured sites from the peripheral circulation. Activated resident microglia and monocyte-derived macrophages induce and magnify immune and inflammatory responses not only by means of their secretory moleculesand phagocytosis, but also through their influence on astrocytes, oligodendrocytes and demyelination. In this review, we focus on the roles of mi- croglia and macrophages in secondary injury and how they contribute to the sequelae of SCI.展开更多
Over the last two decades multiple studies have demonstrated an increased incidence of additional malignancies in patients with intraductal papillary mucinous neoplasms(IPMNs).Additional malignancies have been identif...Over the last two decades multiple studies have demonstrated an increased incidence of additional malignancies in patients with intraductal papillary mucinous neoplasms(IPMNs).Additional malignancies have been identified in 10%-52% of patients with IPMNs.The majority of these additional cancers occur before or concurrent with the diagnosis of IPMN.The gastrointestinal tract is most commonly involved in secondary malignancies,with benign colon polyps and colon cancer commonly seen in western countries and gastric cancer commonly seen in Asian countries.Other extrapancreatic malignancies associated with IPMNs include benign and malignant esophageal neoplasms,gastrointestinal stromal tumors,carcinoid tumors,hepatobiliary cancers,breast cancers,prostate cancers,and lung cancers.There is no clear etiology for the development of secondary malignancies in patients with IPMN.Although population-based studies have shown different results from single institution studies regarding the exact incidence of additional primary cancers in IPMN patients,both have reached the same conclusion:there is a higher incidence of extrapancreatic malignancies in patients with IPMNs than in the general population.This f inding has signif icant clinical implications for both the initial evaluation and the subsequent long-term followup of patients with IPMNs.If a patient has not had recent colonoscopy,this should be performed during the evaluation of a newly diagnosed IPMN.Upper endoscopy should be performed in patients from Asian countries or for those who present with symptoms suggestive of upper gastrointestinal disease.Routine screening studies(breast and prostate) should be carried out as currently recommended for patient's age both before and after the diagnosis of IPMN.展开更多
The complex and variable nature of traumatic spinal cord inju- ry (SCI) presents a unique challenge for translational research. SCI is not bound by any demographic nor is it limited to specific injury biomechanics.
Increasing evidence indicates that mitochonarial lission imbalance plays an important role in derayed neuronal cell death. Our previous study round that photo biomodulation improved the motor function of rats with spi...Increasing evidence indicates that mitochonarial lission imbalance plays an important role in derayed neuronal cell death. Our previous study round that photo biomodulation improved the motor function of rats with spinal cord injury.However,the precise mechanism remains unclear.To investigate the effect of photo biomodulation on mitochondrial fission imbalance after spinal cord injury,in this study,we treated rat models of spinal co rd injury with 60-minute photo biomodulation(810 nm,150 mW) every day for 14 consecutive days.Transmission electron microscopy results confirmed the swollen and fragmented alte rations of mitochondrial morphology in neurons in acute(1 day) and subacute(7 and 14 days) phases.Photo biomodulation alleviated mitochondrial fission imbalance in spinal cord tissue in the subacute phase,reduced neuronal cell death,and improved rat posterior limb motor function in a time-dependent manner.These findings suggest that photobiomodulation targets neuronal mitochondria,alleviates mitochondrial fission imbalance-induced neuronal apoptosis,and thereby promotes the motor function recovery of rats with spinal cord injury.展开更多
Studies have shown that gut microbiota metabolites can enter the central nervous system via the blood-spinal cord barrier and cause neuroinflammation, thus constituting secondary injury after spinal cord injury. To in...Studies have shown that gut microbiota metabolites can enter the central nervous system via the blood-spinal cord barrier and cause neuroinflammation, thus constituting secondary injury after spinal cord injury. To investigate the correlation between gut microbiota and metabolites and the possible mechanism underlying the effects of gut microbiota on secondary injury after spinal cord injury, in this study, we established mouse models of T8–T10 traumatic spinal cord injury. We used 16 S rRNA gene amplicon sequencing and metabolomics to reveal the changes in gut microbiota and metabolites in fecal samples from the mouse model. Results showed a severe gut microbiota disturbance after spinal cord injury, which included marked increases in pro-inflammatory bacteria, such as Shigella, Bacteroides, Rikenella, Staphylococcus, and Mucispirillum and decreases in anti-inflammatory bacteria, such as Lactobacillus, Allobaculum, and Sutterella. Meanwhile, we identified 27 metabolites that decreased and 320 metabolites that increased in the injured spinal cord. Combined with pathway enrichment analysis, five markedly differential amino acids(L-leucine, L-methionine, L-phenylalanine, L-isoleucine and L-valine) were screened out, which play a pivotal role in activating oxidative stress and inflammatory responses following spinal cord injury. Integrated correlation analysis indicated that the alteration of gut microbiota was related to the differences in amino acids, which suggests that disturbances in gut microbiota might participate in the secondary injury through the accumulation of partial metabolites that activate oxidative stress and inflammatory responses. Findings from this study provide a new theoretical basis for improving the secondary injury after spinal cord injury through fecal microbial transplantation.展开更多
Objective To investigate the effects of Glibenclamide on reduction of secondary damage after acute spinal cord injury in rats.Methods Ninety rats were randomly divided into control group(laminectomy alone),spinal cord...Objective To investigate the effects of Glibenclamide on reduction of secondary damage after acute spinal cord injury in rats.Methods Ninety rats were randomly divided into control group(laminectomy alone),spinal cord injury group(injury group),and treatment group(treated展开更多
背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄...背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄芩苷及雷公藤甲素等中药单体治疗脊髓损伤后神经炎症的研究进展进行系统的阐述与归纳。方法:以“脊髓损伤,炎症,抗炎,中药单体,单体化合物,NF-κB信号通路,黄酮,糖苷,酚类,酯类,生物碱”为检索词在中国知网数据库中进行检索;以“Spinal cord injury,inflammation,anti-inflammatory,traditional Chinese medicine monomer,monomeric compound,NF-κB signaling pathway,flavonoids,glycosides,phenols,esters,alkaloids”为检索词在PubMed数据库中进行检索,最终共纳入67篇文献进行综述分析。结果与结论:①核转录因子κB信号通路在神经系统中的作用复杂多样,能够调控中性粒细胞、小胶质细胞、星形胶质细胞和巨噬细胞等,介导损伤后炎症的发生与发展;②中药单体如汉黄芩苷对核转录因子κB抑制蛋白的降解、红花黄素对核转录因子κB信号通路磷酸化过程的抑制、山奈酚对核转录因子κB信号通路p65核易位的抑制等作用可以降低炎症反应对机体造成的影响,从而促进神经功能恢复;③核转录因子κB信号通路在损伤早期能够促进炎症反应和免疫细胞迁移活化,在损伤中后期能够促进损伤部位的修复和纤维化的发生等,适当的激活核转录因子κB信号通路具有促进炎症因子的释放、提高细胞的抗氧化能力及促进免疫细胞的活化等能力,但过度激活的核转录因子κB信号通路则容易导致慢性炎症的发生和持续、细胞凋亡受到抑制等;④未来的研究可以进一步探索如何准确调控核转录因子κB信号通路的活化水平、如何实现对神经系统炎症和损伤的精准干预展开,也可围绕中药单体的制备及中药单体对信号通路的作用机制展开,以期为神经系统疾病的康复和功能恢复提供更有效的治疗策略。展开更多
One in every two individuals will experience a traumatic brain injury in their lifetime with significant impacts on the global economy and healthcare system each year.Neurovascular injury is a key aspect of neurotraum...One in every two individuals will experience a traumatic brain injury in their lifetime with significant impacts on the global economy and healthcare system each year.Neurovascular injury is a key aspect of neurotrauma to both the brain and the spinal cord and an important avenue of current and future research seeking innovative therapies.In this paper,we discuss primary and secondary neurotrauma,mechanisms of injury,the glymphatic system,repair and recovery.Each of these topics are directly connected to the vasculature of the central ner-vous system,affecting severity of injury and recovery.Consequently,neurova-scular injury in trauma represents a promising target for future therapeutics and innovation.展开更多
基金supported by the National Institutes of HealthNo.R56 NS117935(to ASH and WLM)+1 种基金funded by Institutional Clinical and Translational Science AwardNo.UL1 TR002373。
文摘After spinal cord injury,there is an extensive infiltration of immune cells,which exacerbates the injury and leads to further neural degeneration.Therefore,a major aim of current research involves targeting the immune response as a treatment for spinal cord injury.Although much research has been performed analyzing the complex inflammatory process following spinal cord injury,there remain major discrepancies within previous literature regarding the timeline of local cytokine regulation.The objectives of this study were to establish an overview of the timeline of cytokine regulation for 2 weeks after spinal cord injury,identify sexual dimorphisms in terms of cytokine levels,and determine local cytokines that significantly change based on the severity of spinal cord injury.Rats were inflicted with either a mild contusion,moderate contusion,severe contusion,or complete transection,7 mm of spinal cord centered on the injury was harvested at varying times post-injury,and tissue homogenates were analyzed with a Cytokine/Chemokine 27-Plex assay.Results demonstrated pro-inflammatory cytokines including tumor necrosis factorα,interleukin-1β,and interleukin-6 were all upregulated after spinal cord injury,but returned to uninjured levels within approximately 24 hours post-injury,while chemokines including monocyte chemoattractant protein-1 remained upregulated for days post-injury.In contrast,several anti-inflammatory cytokines and growth factors including interleukin-10 and vascular endothelial growth factor were downregulated by 7 days post-injury.After spinal cord injury,tissue inhibitor of metalloproteinase-1,which specifically affects astrocytes involved in glial scar development,increased more than all other cytokines tested,reaching 26.9-fold higher than uninjured rats.After a mild injury,11 cytokines demonstrated sexual dimorphisms;however,after a severe contusion only leptin levels were different between female and male rats.In conclusion,pro-inflammatory cytokines initiate the inflammatory process and return to baseline within hours post-injury,chemokines continue to recruit immune cells for days post-injury,while anti-inflammatory cytokines are downregulated by a week post-injury,and sexual dimorphisms observed after mild injury subsided with more severe injuries.Results from this work define critical chemokines that influence immune cell infiltration and important cytokines involved in glial scar development after spinal cord injury,which are essential for researchers developing treatments targeting secondary damage after spinal cord injury.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2015R1C1A1A01054352)
文摘AIM To investigate the feasibility and safety of secondary endoscopic submucosal dissection(ESD) for residual or locally recurrent gastric tumors. METHODS Between 2010 and 2017, 1623 consecutive patients underwent ESD for gastric neoplasms at a single tertiary referral center. Among these, 28 patients underwent secondary ESD for a residual or locally recurrent tumor. Our analysis compared clinicopathologic factors between primary ESD and secondary ESD groups. RESULTS The en bloc resection and curative rate of resection of secondary ESD were 92.9% and 89.3%, respectively. The average procedure time of secondary ESD was significantly longer than primary ESD(78.2 min vs 55.1 min, P = 0.004), and the adverse events rate was not significantly different but trended slightly higher in the secondary ESD group compared to the primary ESD group(10.7% vs 3.8%, P = 0.095). Patients who received secondary ESD had favorable outcomes without severe adverse events. During a mean follow-up period, no local recurrence occurred in patients who received secondary ESD. CONCLUSION Secondary ESD of residual or locally recurrent gastric tumors appears to be a feasible and curative treatment though it requires greater technical efficiency and longer procedure time.
基金funded by grants from the Fondo de Investigacion de la Seguridad Social(Spain)(FIS PI-14/01935)the Spanish Ministerio de Ciencia y Tecnologia+4 种基金Instituto de Salud Carlos III(PI051871,CIBERehd)the Spanish Ministerio de Economia y Competitividad(SAF2017-86343-R)the Comunidad de Madrid(P2022/BMD-7321)HALEKULANY S.L.PROACAPITAL and MJR.
文摘Spinal cord injury(SCI)is a devastating and disabling medical condition generally caused by a traumatic event(primary injury).This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate neural damage but also exacerbate initial damage(secondary injury).The alterations that occur in the spinal cord have not only local but also systemic consequences and virtually all organs and tissues of the body incur important changes after SCI,explaining the progression and detrimental consequences related to this condition.Psychoneuroimmunoendocrinology(PNIE)is a growing area of research aiming to integrate and explore the interactions among the different systems that compose the human organism,considering the mind and the body as a whole.The initial traumatic event and the consequent neurological disruption trigger immune,endocrine,and multisystem dysfunction,which in turn affect the patient's psyche and well-being.In the present review,we will explore the most important local and systemic consequences of SCI from a PNIE perspective,defining the changes occurring in each system and how all these mechanisms are interconnected.Finally,potential clinical approaches derived from this knowledge will also be collectively presented with the aim to develop integrative therapies to maximize the clinical management of these patients.
基金supported by grants from National Institutes of Health(R01GM100474)the New Jersey Commission on Spinal Cord Research(CSCR13IRG006)
文摘Spinal cord injury (SCI) is a devastating type of neurological trauma with limited therapeutic op- portunities. The pathophysiology of SCI involves primary and secondary mechanisms of injury. Among all the secondary injury mechanisms, the inflammatory response is the major contrib- utor and results in expansion of the lesion and further loss of neurologic function. Meanwhile, the inflammation directly and indirectly dominates the outcomes of SCI, including not only pain and motor dysfunction, but also preventingneuronal regeneration. Microglia and macrophages play very important roles in secondary injury. Microglia reside in spinal parenchyma and survey the microenvironment through the signals of injury or infection. Macrophages are derived from monocytes recruited to injured sites from the peripheral circulation. Activated resident microglia and monocyte-derived macrophages induce and magnify immune and inflammatory responses not only by means of their secretory moleculesand phagocytosis, but also through their influence on astrocytes, oligodendrocytes and demyelination. In this review, we focus on the roles of mi- croglia and macrophages in secondary injury and how they contribute to the sequelae of SCI.
文摘Over the last two decades multiple studies have demonstrated an increased incidence of additional malignancies in patients with intraductal papillary mucinous neoplasms(IPMNs).Additional malignancies have been identified in 10%-52% of patients with IPMNs.The majority of these additional cancers occur before or concurrent with the diagnosis of IPMN.The gastrointestinal tract is most commonly involved in secondary malignancies,with benign colon polyps and colon cancer commonly seen in western countries and gastric cancer commonly seen in Asian countries.Other extrapancreatic malignancies associated with IPMNs include benign and malignant esophageal neoplasms,gastrointestinal stromal tumors,carcinoid tumors,hepatobiliary cancers,breast cancers,prostate cancers,and lung cancers.There is no clear etiology for the development of secondary malignancies in patients with IPMN.Although population-based studies have shown different results from single institution studies regarding the exact incidence of additional primary cancers in IPMN patients,both have reached the same conclusion:there is a higher incidence of extrapancreatic malignancies in patients with IPMNs than in the general population.This f inding has signif icant clinical implications for both the initial evaluation and the subsequent long-term followup of patients with IPMNs.If a patient has not had recent colonoscopy,this should be performed during the evaluation of a newly diagnosed IPMN.Upper endoscopy should be performed in patients from Asian countries or for those who present with symptoms suggestive of upper gastrointestinal disease.Routine screening studies(breast and prostate) should be carried out as currently recommended for patient's age both before and after the diagnosis of IPMN.
文摘The complex and variable nature of traumatic spinal cord inju- ry (SCI) presents a unique challenge for translational research. SCI is not bound by any demographic nor is it limited to specific injury biomechanics.
基金supported by the National Natural Science Foundation of China,Nos.81070996 (to ZW) and 815 72151 (to XYH)Shaanxi Provincial Key R&D Program,Nos.2020ZDLSF02-05 (to ZW),2021ZDLSF02-10 (to XYH)。
文摘Increasing evidence indicates that mitochonarial lission imbalance plays an important role in derayed neuronal cell death. Our previous study round that photo biomodulation improved the motor function of rats with spinal cord injury.However,the precise mechanism remains unclear.To investigate the effect of photo biomodulation on mitochondrial fission imbalance after spinal cord injury,in this study,we treated rat models of spinal co rd injury with 60-minute photo biomodulation(810 nm,150 mW) every day for 14 consecutive days.Transmission electron microscopy results confirmed the swollen and fragmented alte rations of mitochondrial morphology in neurons in acute(1 day) and subacute(7 and 14 days) phases.Photo biomodulation alleviated mitochondrial fission imbalance in spinal cord tissue in the subacute phase,reduced neuronal cell death,and improved rat posterior limb motor function in a time-dependent manner.These findings suggest that photobiomodulation targets neuronal mitochondria,alleviates mitochondrial fission imbalance-induced neuronal apoptosis,and thereby promotes the motor function recovery of rats with spinal cord injury.
基金supported by the National Natural Science Foundation of China,Nos. 81771346, 82071383the Natural Science Foundation of Shandong Province (Key Project),No. ZR2020KH007+3 种基金the Taishan Scholar Youth Program of Shandong Province,No. tsqn201812156Academic Promotion Program of Shandong First Medical University,Nos. 2019QL025, 2019RC021Spring Industry Leader Talent Support Plan,No. 201984Rongxiang Regenerative Medicine Fund,No. 2019SDRX-23 (all to BN)。
文摘Studies have shown that gut microbiota metabolites can enter the central nervous system via the blood-spinal cord barrier and cause neuroinflammation, thus constituting secondary injury after spinal cord injury. To investigate the correlation between gut microbiota and metabolites and the possible mechanism underlying the effects of gut microbiota on secondary injury after spinal cord injury, in this study, we established mouse models of T8–T10 traumatic spinal cord injury. We used 16 S rRNA gene amplicon sequencing and metabolomics to reveal the changes in gut microbiota and metabolites in fecal samples from the mouse model. Results showed a severe gut microbiota disturbance after spinal cord injury, which included marked increases in pro-inflammatory bacteria, such as Shigella, Bacteroides, Rikenella, Staphylococcus, and Mucispirillum and decreases in anti-inflammatory bacteria, such as Lactobacillus, Allobaculum, and Sutterella. Meanwhile, we identified 27 metabolites that decreased and 320 metabolites that increased in the injured spinal cord. Combined with pathway enrichment analysis, five markedly differential amino acids(L-leucine, L-methionine, L-phenylalanine, L-isoleucine and L-valine) were screened out, which play a pivotal role in activating oxidative stress and inflammatory responses following spinal cord injury. Integrated correlation analysis indicated that the alteration of gut microbiota was related to the differences in amino acids, which suggests that disturbances in gut microbiota might participate in the secondary injury through the accumulation of partial metabolites that activate oxidative stress and inflammatory responses. Findings from this study provide a new theoretical basis for improving the secondary injury after spinal cord injury through fecal microbial transplantation.
文摘Objective To investigate the effects of Glibenclamide on reduction of secondary damage after acute spinal cord injury in rats.Methods Ninety rats were randomly divided into control group(laminectomy alone),spinal cord injury group(injury group),and treatment group(treated
文摘背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄芩苷及雷公藤甲素等中药单体治疗脊髓损伤后神经炎症的研究进展进行系统的阐述与归纳。方法:以“脊髓损伤,炎症,抗炎,中药单体,单体化合物,NF-κB信号通路,黄酮,糖苷,酚类,酯类,生物碱”为检索词在中国知网数据库中进行检索;以“Spinal cord injury,inflammation,anti-inflammatory,traditional Chinese medicine monomer,monomeric compound,NF-κB signaling pathway,flavonoids,glycosides,phenols,esters,alkaloids”为检索词在PubMed数据库中进行检索,最终共纳入67篇文献进行综述分析。结果与结论:①核转录因子κB信号通路在神经系统中的作用复杂多样,能够调控中性粒细胞、小胶质细胞、星形胶质细胞和巨噬细胞等,介导损伤后炎症的发生与发展;②中药单体如汉黄芩苷对核转录因子κB抑制蛋白的降解、红花黄素对核转录因子κB信号通路磷酸化过程的抑制、山奈酚对核转录因子κB信号通路p65核易位的抑制等作用可以降低炎症反应对机体造成的影响,从而促进神经功能恢复;③核转录因子κB信号通路在损伤早期能够促进炎症反应和免疫细胞迁移活化,在损伤中后期能够促进损伤部位的修复和纤维化的发生等,适当的激活核转录因子κB信号通路具有促进炎症因子的释放、提高细胞的抗氧化能力及促进免疫细胞的活化等能力,但过度激活的核转录因子κB信号通路则容易导致慢性炎症的发生和持续、细胞凋亡受到抑制等;④未来的研究可以进一步探索如何准确调控核转录因子κB信号通路的活化水平、如何实现对神经系统炎症和损伤的精准干预展开,也可围绕中药单体的制备及中药单体对信号通路的作用机制展开,以期为神经系统疾病的康复和功能恢复提供更有效的治疗策略。
文摘One in every two individuals will experience a traumatic brain injury in their lifetime with significant impacts on the global economy and healthcare system each year.Neurovascular injury is a key aspect of neurotrauma to both the brain and the spinal cord and an important avenue of current and future research seeking innovative therapies.In this paper,we discuss primary and secondary neurotrauma,mechanisms of injury,the glymphatic system,repair and recovery.Each of these topics are directly connected to the vasculature of the central ner-vous system,affecting severity of injury and recovery.Consequently,neurova-scular injury in trauma represents a promising target for future therapeutics and innovation.