期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fine motor skill training enhances functional plasticity of the corticospinal tract after spinal cord injury 被引量:5
1
作者 Jian Liu Xiao-yu Yang +3 位作者 Wei-wei Xia Jian Dong Mao-guang Yang Jian-hang Jiao 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第12期1990-1996,共7页
Following central nervous system injury, axonal sprouts form distal to the injury site and extend into the denervated area, reconstructing neural circuits through neural plasticity. How to facilitate this plasticity h... Following central nervous system injury, axonal sprouts form distal to the injury site and extend into the denervated area, reconstructing neural circuits through neural plasticity. How to facilitate this plasticity has become the key to the success of central nervous system repair. It remains controversial whether fine motor skill training contributes to the recovery of neurological function after spinal cord injury. Therefore, we established a rat model of unilateral corticospinal tract injury using a pyramidal tract cutting method. Horizontal ladder crawling and food ball grasping training procedures were conducted 2 weeks before injury and 3 days after injury. The neurological function of rat forelimbs was assessed at 1, 2, 3, 4, and 6 weeks after injury. Axon growth was observed with biotinylated dextran amine anterograde tracing in the healthy corticospinal tract of the denervated area at different time periods. Our results demonstrate that compared with untrained rats, functional recovery was better in the forelimbs and forepaws of trained rats. The number of axons and the expression of growth associated protein 43 were increased at the injury site 3 weeks after corticospinal tract injury. These findings confirm that fine motor skill training promotes central nervous system plasticity in spinal cord injury rats. 展开更多
关键词 nerve regeneration spinal cord injury plasticity axons functional training corticospinal tract growth associated protein 43 neural regeneration
下载PDF
Senegenin inhibits neuronal apoptosis after spinal cord contusion injury 被引量:7
2
作者 Shu-quan Zhang Min-fei Wu +4 位作者 Rui Gu Jia-bei Liu Ye Li Qing-san Zhu Jin-lan Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期657-663,共7页
Senegenin has been shown to inhibit neuronal apoptosis,thereby exerting a neuroprotective effect.In the present study,we established a rat model of spinal cord contusion injury using the modified Allen's method.Three... Senegenin has been shown to inhibit neuronal apoptosis,thereby exerting a neuroprotective effect.In the present study,we established a rat model of spinal cord contusion injury using the modified Allen's method.Three hours after injury,senegenin(30 mg/g) was injected into the tail vein for 3 consecutive days.Senegenin reduced the size of syringomyelic cavities,and it substantially reduced the number of apoptotic cells in the spinal cord.At the site of injury,Bax and Caspase-3 m RNA and protein levels were decreased by senegenin,while Bcl-2 m RNA and protein levels were increased.Nerve fiber density was increased in the spinal cord proximal to the brain,and hindlimb motor function and electrophysiological properties of rat hindlimb were improved.Taken together,our results suggest that senegenin exerts a neuroprotective effect by suppressing neuronal apoptosis at the site of spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord contusion senegenin thinleaf milkwort root motor function apoptosis electrophysiology neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部