期刊文献+
共找到484篇文章
< 1 2 25 >
每页显示 20 50 100
Scanning pattern of diffusion tensor tractography and an analysis of the morphology and function of spinal nerve roots 被引量:2
1
作者 Xin Tian Huaijun Liu +6 位作者 Zuojun Geng Hua Yang Guoshi Wang Jiping Yang Chunxia Wang Cuining Li Ying Li 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第33期3159-3166,共8页
Radiculopathy, commonly induced by intervertebral disk bulging or protrusion, is presently diag- nosed in accordance with clinical symptoms because there is no objective quantitative diagnostic criterion. Diffusion te... Radiculopathy, commonly induced by intervertebral disk bulging or protrusion, is presently diag- nosed in accordance with clinical symptoms because there is no objective quantitative diagnostic criterion. Diffusion tensor magnetic resonance imaging and diffusion tensor tractography revealed the characterization of anisotropic diffusion and displayed the anatomic form of nerve root fibers. This study included 18 cases with intervertebral disc degeneration-induced unilateral radiculopathy. Magnetic resonance diffusion tensor imaging was creatively used to reveal the scanning pattern of fiber tracking of the spinal nerve root. A scoring system of nerve root morphology was used to quantitatively assess nerve root morphology and functional alteration after intervertebral disc de- generation. Results showed that after fiber tracking, compared with unaffected nerve root, fiber bundles gathered together and interrupted at the affected side. No significant alteration was de- tected in the number of fiber bundles, but the cross-sectional area of nerve root fibers was reduced. These results suggest that diffusion tensor magnetic resonance imaging-based tractography can be used to quantitatively evaluate nerve root function according to the area and morphology of fiber bundles of nerve roots. 展开更多
关键词 neural regeneration spinal cord inerve root degenerative diseasenjury magnetic resonance diffusion imaging tracking nerve injurygrants-supported paper NEUROREGENERATION
下载PDF
Combined Sacral Nerve Roots Stimulation and Low Thoracic Spinal Cord Stimulation for the Treatment of Chronic Pelvic Pain
2
作者 Samer Abdel-Aziz Ahmed Ghaleb 《Pain Studies and Treatment》 2014年第2期86-90,共5页
Some pelvic pain syndromes are very resistant to medical treatment. Several studies have demonstrated that sacral neuromodulation, which has been successfully used for the treatment of bladder dysfunction, incontinenc... Some pelvic pain syndromes are very resistant to medical treatment. Several studies have demonstrated that sacral neuromodulation, which has been successfully used for the treatment of bladder dysfunction, incontinence, urinary retention and urinary frequency [1]-[3], can be successfully used for the treatment of chronic pelvic pain [4]-[7]. Several studies have also demonstrated significant involvement of dorsal column pathways in the transmission of visceral pelvic pain [8] and the successful use of spinal cord stimulation for the treatment of chronic pelvic pain [9]. We report three cases of severe chronic pelvic pain that failed conservative treatment modalities. Placement of a combined sacral nerve roots stimulator and a low thoracic spinal cord stimulator resulted in a significant pain relief and improvement in daily life activities. We believe that this combination may help patients suffering from chronic pelvic pain resistant to medical management. 展开更多
关键词 Chronic PELVIC Pain SACRAL nerve roots STIMULATION THORACIC spinal CORD STIMULATION
下载PDF
Effect of continuous spinal anesthesia with ropivacaine on the ultrastructure of spinal cord and nerve roots in rats
3
作者 孙志华 《外科研究与新技术》 2005年第3期157-157,共1页
To investigate the effects of continuous spinal anesthesia with different concentrations and doses of ropivacaine on the ultrastructure of the spinal cord and nerve roots.Methods Twenty-four male SD rats weighing 220... To investigate the effects of continuous spinal anesthesia with different concentrations and doses of ropivacaine on the ultrastructure of the spinal cord and nerve roots.Methods Twenty-four male SD rats weighing 220~280 g were anesthetized with intraperitoneal 10% chloral hydrate 300~350 mg/kg.A polyurethane microcatheter was inserted into the lumbar subarachnoid space according to the technique described by Yaksh.An 8 cm catheter segment was left in the subarachnoid space.The animals were randomized to receive normal saline,0.5%,0.75% or 1.0% ropivacaine 40 μl intrathecally 3 times at 1.5 h interval.Six hours after the first intrathecal administration the animals were decaptiated and L 1,2 segment of the spinal cord and nerve roots were immediately removed for electron microscopic examination.Results Electron microscopic examination revealed that in animals which received intrathecal (i.t.) normal saline,0.5% or 0.75% ropivacaine the neurolemma of the nerve roots and the mitochondria and endoplasmic reticulum of the neurons in the spinal cord were intact,while in animals which received i.t. 10.% ropivacaine the neurolemma was stratified and partly disrupted and there were swelling of endoplasmic reticulum and vacuole degeneration.Conclusion Six hours continuous spinal anesthesia with 10.% ropivacaine may be injurious to the spinal cord and nerve roots.12 refs,8 figs,1 tab. 展开更多
关键词 Effect of continuous spinal anesthesia with ropivacaine on the ultrastructure of spinal cord and nerve roots in rats
下载PDF
Extradural contralateral S1 nerve root transfer for spastic lower limb paralysis
4
作者 Jiang Cao Jie Chang +5 位作者 Chaoqin Wu Sheng Zhang Binyu Wang Kaixiang Yang Xiaojian Cao Tao Sui 《The Journal of Biomedical Research》 CAS CSCD 2023年第5期394-400,共7页
The current study aims to ascertain the anatomical feasibility of transferring the contralateral S1 ventral root(VR)to the ipsilateral L5 VR for treating unilateral spastic lower limb paralysis.Six formalin-fixed(thre... The current study aims to ascertain the anatomical feasibility of transferring the contralateral S1 ventral root(VR)to the ipsilateral L5 VR for treating unilateral spastic lower limb paralysis.Six formalin-fixed(three males and three females)cadavers were used.The VR of the contralateral S1 was transferred to the VR of the ipsilateral L5.The sural nerve was selected as a bridge between the donor and recipient nerve.The number of axons,the cross-sectional areas and the pertinent distances between the donor and recipient nerves were measured.The extradural S1 VR and L5 VR could be separated based on anatomical markers of the dorsal root ganglion.The gross distance between the S1 nerve root and L5 nerve root was 31.31(±3.23)mm in the six cadavers,while that on the diffusion tensor imaging was 47.51(±3.23)mm in 60 patients without spinal diseases,and both distances were seperately greater than that between the outlet of S1 from the spinal cord and the ganglion.The numbers of axons in the S1 VRs and L5 VRs were 13414.20(±2890.30)and 10613.20(±2135.58),respectively.The cross-sectional areas of the S1 VR and L5 VR were 1.68(±0.26)mm2 and 1.08(±0.26)mm2,respectively.In conclusion,transfer of the contralateral S1 VR to the ipsilateral L5 VR may be an anatomically feasible treatment option for unilateral spastic lower limb paralysis. 展开更多
关键词 PARALYSIS spinal nerve roots nerve transfer ankle joint
下载PDF
Prolonged electrical stimulation causes no damage to sacral nerve roots in rabbits 被引量:3
5
作者 Peng Yan Xiaohong Yang +2 位作者 Xiaoyu Yang Weidong Zheng Yunbing Tan 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第12期1217-1221,共5页
Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode b... Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode block electrical stimulation causes damage to the sacral nerve root re- mains unclear, and needs further investigation. In this study, a complete spinal cord injury model was established in New Zealand white rabbits through T9_10 segment transection. Rabbits were given continuous electrical stimulation for a short period and then chronic stimulation for a longer period. Results showed that compared with normal rabbits, the structure of nerve cells in the anterior sacral nerve roots was unchanged in spinal cord injury rabbits after electrical stimu- lation. There was no significant difference in the expression of apoptosis-related proteins such as Bax, Caspase-3, and Bcl-2. Experimental findings indicate that neurons in the rabbit sacral nerve roots tolerate electrical stimulation, even after long-term anode block electrical stimulation. 展开更多
关键词 nerve regeneration spinal cord injury sacral nerve root electrical stimulation anodeblock spinal cord reconstruction bladder function nerve prosthesis neural regeneration
下载PDF
Reduction in nerve root compression by the nucleus pulposus after Feng's Spinal Manipulation 被引量:3
6
作者 Yu Feng Yan Gao +1 位作者 Wendong Yang Tianyou Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第12期1139-1145,共7页
Ninety-four patients with lumbar intervertebral disc herniation were enrolled in this study. Of these, 48 were treated with Feng's Spinal Manipulation, hot fomentation, and bed rest (treatment group). The remaining... Ninety-four patients with lumbar intervertebral disc herniation were enrolled in this study. Of these, 48 were treated with Feng's Spinal Manipulation, hot fomentation, and bed rest (treatment group). The remaining 46 patients were treated with hot fomentation and bed rest only (control group). After 3 weeks of treatment, clinical parameters including the angle of straight-leg raising, visual analogue scale pain score, and Japanese Orthopaedic Association score for low back pain were improved. The treatment group had significantly better improvement in scores than the control group. Magnetic resonance myelography three-dimensional reconstruction imaging of the vertebral canal demonstrated that filling of the compressed nerve root sleeve with cerebrospinal fluid increased significantly in the treatment group. The diameter of the nerve root sleeve was significantly larger in the treatment group than in the control group. However, the sagittal diameter index of the herniated nucleus pulposus and the angle between the nerve root sleeve and the thecal sac did not change significantly in either the treatment or control groups. The effectiveness of Feng's Spinal Manipulation for the treatment of symptoms associated with lumbar intervertebral disc herniation may be attributable to the relief of nerve root compression, without affecting the herniated nucleus pulposus or changing the morphology or position of the nerve root. 展开更多
关键词 neural regeneration traditional Chinese medicine spinal column rotating reduction manipulation Chinese medicine bone-setting lumbar intervertebral disc herniation intervertebral disc nerve root magnetic resonance imaging biomechanics grants-supported paper NEUROREGENERATION
下载PDF
Evaluation of degree of nerve root injury by dermatomal somatosensory evoked potential following lumbar spinal stenosis 被引量:2
7
作者 Ningjiang Shen Guangji Wang Jian Chen Xiaoli Wu Yutian Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第11期1249-1252,共4页
BACKGROUND: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) can display the site of lumbar spinal stenosis and predict nervous compression at the morphological level; however, pure morphological cha... BACKGROUND: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) can display the site of lumbar spinal stenosis and predict nervous compression at the morphological level; however, pure morphological changes cannot reflect functional alterations in a compressed nerve root. Dermatomal somatosensory evoked potential (DSEP) provides a means to assess the functional state of a nerve root. OBJECTIVE: To evaluate the clinical significance of DSEP, assessing the degree of nerve root injury following lumbar spinal stenosis. DESIGN, TIME AND SETTING: A case-control study was performed in the Department of Orthopaedic Surgery, Hainan People's Hospital, China, between September 2004 and December 2007. PARTICIPANTS: Forty-seven patients diagnosed with lumbar spinal stenosis by CT or MRI were selected as the case group; fifty healthy subjects were collected as the control group. METHODS: A KEYPOINT myoelectric evoked potential apparatus (DANTEC Company, Denmark) was used to measure DSEP, and stimulative spots were determined in accordance with the skin key sensory spot standards established by The American Spinal Injury Association: L4 in the medial malleolus, L5 in the third metatarsophalangeal joint of the dorsum of foot and S1 in the lateral heel. The needle electrode used as the recording electrode was located at the Cz point of the cranium, and the reference electrode at the Fz point. MAIN OUTCOME MEASURES: Latency of the P40 peak of DSEP, P1-N1 amplitude, P40 waveform and differentiation and disappearance of various waves. RESULTS: The sensitivity and diagnostic concurrence with surgery of nerve root injury following lumbar spinal stenosis evaluated by DSEP was 95.7 %. P40 latencies at L4, L5 and S1 in the case group were significantly longer than in the control group (P 〈 0.05), and the P1-N1 amplitude in the case group was significantly lower than the control group (P 〈 0.05-0.01). Nerve root injury was categorized according to DSEP latency as follows: severe damage (disappearance of the P40 wave in 103 dermatomes), moderate damage (prolongation of the P40 peak latency ≥ 3.0 times the standard deviation of the normal mean in 60 dermatomes) and mild damage (prolongation of the P40 peak latency ≥ 2.5 times the standard deviation of the normal mean in 31 dermatomes). CONCLUSION: DSEP can be used to determine the severity of nerve root injury following lumbar spinal stenosis with high sensitivity and specificity. 展开更多
关键词 dermatomal somatosensory evoked potential lumbar spinal stenosis nerve root injury
下载PDF
Magnetic resonance imaging findings of redundant nerve roots of the cauda equina 被引量:2
8
作者 Erkan Gökçe Murat Beyhan 《World Journal of Radiology》 CAS 2021年第1期29-39,共11页
BACKGROUND Redundant nerve roots(RNRs)of the cauda equina are often a natural evolutionary part of lumbar spinal canal stenosis secondary to degenerative processes characterized by elongated,enlarged,and tortuous nerv... BACKGROUND Redundant nerve roots(RNRs)of the cauda equina are often a natural evolutionary part of lumbar spinal canal stenosis secondary to degenerative processes characterized by elongated,enlarged,and tortuous nerve roots in the superior and/or inferior of the stenotic segment.Although magnetic resonance imaging(MRI)findings have been defined more frequently in recent years,this condition has been relatively under-recognized in radiological practice.In this study,lumbar MRI findings of RNRs of the cauda equina were evaluated in spinal stenosis patients.AIM To evaluate RNRs of the cauda equina in spinal stenosis patients.METHODS One-hundred and thirty-one patients who underwent lumbar MRI and were found to have spinal stenosis between March 2010 and February 2019 were included in the study.On axial T2-weighted images(T2WI),the cross-sectional area(CSA)of the dural sac was measured at L2-3,L3-4,L4-5,and L5-S1 levels in the axial plane.CSA levels below 100 mm^2 were considered stenosis.Elongation,expansion,and tortuosity in cauda equina fibers in the superior and/or inferior of the stenotic segment were evaluated as RNRs.The patients were divided into two groups:Those with RNRs and those without RNRs.The CSA cut-off value resulting in RNRs of cauda equina was calculated.Relative length(RL)of RNRs was calculated by dividing the length of RNRs at mid-sagittal T2WI by the height of the vertebral body superior to the stenosis level.The associations of CSA leading to RNRs with RL,disc herniation type,and spondylolisthesis were evaluated.RESULTS Fifty-five patients(42%)with spinal stenosis had RNRs of the cauda equina.The average CSA was 40.99±12.76 mm^2 in patients with RNRs of the cauda equina and 66.83±19.32 mm^2 in patients without RNRs.A significant difference was found between the two groups for CSA values(P<0.001).Using a cut-off value of 55.22 mm^2 for RNRs of the cauda equina,sensitivity,specificity,positive predictive value(PPV),and negative predictive value(NPV)values of 96.4%,96.1%,89.4%,and 98.7%were obtained,respectively.RL was 3.39±1.31(range:0.93-6.01).When the extension of RNRs into the superior and/or inferior of the spinal canal stenosis level was evaluated,it was superior in 54.5%,both superior and inferior in 32.8%,and inferior in 12.7%.At stenosis levels leading to RNRs of the cauda equina,29 disc herniations with soft margins and 26 with sharp margins were detected.Disc herniation type and spondylolisthesis had no significant relationship with RL or CSA of the dural sac with stenotic levels(P>0.05).As the CSA of the dural sac decreased,the incidence of RNRs observed at the superior of the stenosis level increased(P<0.001).CONCLUSION RNRs of the cauda equina are frequently observed in patients with spinal stenosis.When the CSA of the dural sac is<55 mm^2,lumbar MRIs should be carefully examined for this condition. 展开更多
关键词 Cauda equina Dural sac Lumbar spine Magnetic resonance imaging Redundant nerve roots spinal stenosis
下载PDF
Pulsed electrical stimulation protects neurons in the dorsal root and anterior horn of the spinal cord after peripheral nerve injury 被引量:3
9
作者 Bao-an Pei Jin-hua Zi +2 位作者 Li-sheng Wu Cun-hua Zhang Yun-zhen Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1650-1655,共6页
Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximat... Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 m A and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers. 展开更多
关键词 nerve regeneration peripheral nerve pulsed electrical stimulation spinal cord neurons dorsal root ganglion nerve conduction neural regeneration
下载PDF
The imaging analysis of magnetic resonance myelography in disease of the lumbosacral nerve roots 被引量:1
10
作者 施鑫 朱锡旭 赵建宁 《中国临床康复》 CSCD 2003年第2期320-320,共1页
AIM:To illustrate the magnetic resonce(MR) myelography features in the disease of lumbosacral nerve roots.METHODS:MR myelography using heavily T2 weighted spin-echo imaging with fat supression was performed in 75 cas... AIM:To illustrate the magnetic resonce(MR) myelography features in the disease of lumbosacral nerve roots.METHODS:MR myelography using heavily T2 weighted spin-echo imaging with fat supression was performed in 75 cases with chronic pain of waist on a Siemens Magneton Impect 1.0 TMR unit.Maximum intensity projection(MIP) was used for image reconstruction.RESULTS:The thecal maugins,nerve roots and nerve root sheaths were well demonstrated on MR myelography image.In 75 patients with chronic of waist,nerve root disease was found in 11 cases.6nerve root abnormality (8%),2perineural cyst(3%),3 neurofibroma(4%) had their own MR myelography features.CONCLUSION:MR myelography can show the morphologic and structural change of lumbosacral nerve roots.In MR myelography image,disease of lumbosacral nerve roots has a characteristic finding.MR myelography in very useful in diagnosis of nerve-root disease. 展开更多
关键词 腰骶神经根疾病 核磁共振成像 脊髓造影 诊断 影像学分析
下载PDF
Peripheral nerve injury induced changes in the spinal cord and strategies to counteract/enhance the changes to promote nerve regeneration 被引量:3
11
作者 Yan Liu Huan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第2期189-198,共10页
Peripheral nerve injury leads to morphological, molecular and gene expression changes in the spinal cord and dorsal root ganglia, some of which have positive impact on the survival of neurons and nerve regeneration, w... Peripheral nerve injury leads to morphological, molecular and gene expression changes in the spinal cord and dorsal root ganglia, some of which have positive impact on the survival of neurons and nerve regeneration, while the effect of others is the opposite. It is crucial to take prompt measures to capitalize on the positive effects of these reactions and counteract the negative impact after peripheral nerve injury at the level of spinal cord, especially for peripheral nerve injuries that are severe, located close to the cell body, involve long distance for axons to regrow and happen in immature individuals. Early nerve repair, exogenous supply of neurotrophic factors and Schwann cells can sustain the regeneration inductive environment and enhance the positive changes in neurons. Administration of neurotrophic factors, acetyl-L-carnitine, N-acetyl-cysteine, and N-methyl-D-aspartate receptor antagonist MK-801 can help counteract axotomy-induced neuronal loss and promote regeneration, which are all time-dependent. Sustaining and reactivation of Schwann cells after denervation provides another effective strategy. FK506 can be used to accelerate axonal regeneration of neurons, especially after chronic axotomy. Exploring the axotomy-induced changes after peripheral nerve injury and applying protective and promotional measures in the spinal cord which help to retain a positive functional status for neuron cell bodies will inevitably benefit regeneration of the peripheral nerve and improve functional outcomes. 展开更多
关键词 AXOTOMY DORSAL root GANGLION neural regeneration NEUROTROPHIC factors outcomes peripheral nerve injury repair spinal CORD
下载PDF
An atypical primary malignant melanoma arising from the cervical nerve root: A case report and review of literture
12
作者 Yi-Feng Shi Yu-Qi Chen +1 位作者 Hai-Feng Chen Xin Hu 《World Journal of Clinical Cases》 SCIE 2022年第1期381-387,共7页
BACKGROUND Primary melanomas affecting the central nervous system are very rare,and melanomas originating in the spinal canal or origin of the spinal nerve root are even rarer.As a consequence,not much is known about ... BACKGROUND Primary melanomas affecting the central nervous system are very rare,and melanomas originating in the spinal canal or origin of the spinal nerve root are even rarer.As a consequence,not much is known about this.CASE SUMMARY Here we report a case of primary malignant melanoma originating in the cervical spinal cord nerve root.A 64-year-old woman presented with symptoms of numbness in the right side of the neck,pain,and hypoesthesia in the right upper limb which persisted for 1 year.Neurological examination showed that the superficial sensation in the right upper limb had decreased with muscle strength of grade 4.Magnetic resonance imaging examination revealed a mass(approximately 2.5 cm×1.4 cm×1 cm)in the right side of the spinal canal in the C-2 plane.Based on findings obtained during operation,perioperative examination,pathological diagnosis,and the diagnostic criteria of primary central melanoma proposed by Hayward,the mass was confirmed to be a melanoma of intraspinal nerve root origin.CONCLUSION This is the first case of primary malignant melanoma originating from cervical spinal cord nerve roots and spread along the inside and outside of the spinal canal.The clinical relevance of this case is discussed to provide new insights into the differential diagnosis of intraspinal tumours.Further studies are needed to better understand the mechanisms driving the growth pattern and development of this type of tumour. 展开更多
关键词 spinal cord Primary melanoma nerve root Primary neoplasm Case report
下载PDF
Galanin and its receptor system promote the repair of injured sciatic nerves in diabetic rats 被引量:5
13
作者 Xiao- feng Xu Dan-dan Zhang +3 位作者 Jin-chi Liao Li Xiao Qing Wang Wei Qiu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1517-1526,共10页
Various studies have reported that galanin can promote axonal regeneration of dorsal root ganglion neurons in vitro and inhibit neuropathic pain. However, little is known about its effects on diabetic peripheral neuro... Various studies have reported that galanin can promote axonal regeneration of dorsal root ganglion neurons in vitro and inhibit neuropathic pain. However, little is known about its effects on diabetic peripheral neuropathy, and in vivo experimental data are lacking. We hypothesized that repeated applications of exogenous galanin over an extended time frame may also repair nerve damage in diabetic peripheral neuropathy, and relieve pain in vivo. We found that neuropathic pain occurred in streptozotocin-induced diabetic rats and was more severe after sciatic nerve pinch injury at 14 and 28 days than in diabetic sham-operated rats. Treatment with exogenous galanin alleviated the neuropathic pain and promoted sciatic nerve regeneration more effectively in diabetic rats than in non-diabetic rats after sciatic nerve pinch injury. This was accompanied by changes in the levels of endogenous galanin, and its receptors galanin receptor 1 and galanin receptor 2 in the dorsal root ganglia and the spinal dorsal horn when compared with nerve pinch normal rats. Our results show that application of exogenous galanin daily for 28 days can promote the regeneration of injured sciatic nerves, and alleviate neuropathic pain in diabetic rats. 展开更多
关键词 nerve regeneration peripheral nerve injury DIABETES sciatic nerve GALANIN galanin receptor 1 galanin receptor 2 neuropathicpain dorsal root ganglion spinal dorsal horn neural regeneration
下载PDF
Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation 被引量:9
14
作者 Xiao-Lei Chu Xi-Zi Song +4 位作者 Qi Li Yu-Ru Li Feng He Xiao-Song Gu Dong Ming 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第10期2185-2193,共9页
Previous studies on the mechanisms of peripheral nerve injury(PNI)have mainly focused on the pathophysiological changes within a single injury site.However,recent studies have indicated that within the central nervous... Previous studies on the mechanisms of peripheral nerve injury(PNI)have mainly focused on the pathophysiological changes within a single injury site.However,recent studies have indicated that within the central nervous system,PNI can lead to changes in both injury sites and target organs at the cellular and molecular levels.Therefore,the basic mechanisms of PNI have not been comprehensively understood.Although electrical stimulation was found to promote axonal regeneration and functional rehabilitation after PNI,as well as to alleviate neuropathic pain,the specific mechanisms of successful PNI treatment are unclear.We summarize and discuss the basic mechanisms of PNI and of treatment via electrical stimulation.After PNI,activity in the central nervous system(spinal cord)is altered,which can limit regeneration of the damaged nerve.For example,cell apoptosis and synaptic stripping in the anterior horn of the spinal cord can reduce the speed of nerve regeneration.The pathological changes in the posterior horn of the spinal cord can modulate sensory abnormalities after PNI.This can be observed in cases of ectopic discharge of the dorsal root ganglion leading to increased pain signal transmission.The injured site of the peripheral nerve is also an important factor affecting post-PNI repair.After PNI,the proximal end of the injured site sends out axial buds to innervate both the skin and muscle at the injury site.A slow speed of axon regeneration leads to low nerve regeneration.Therefore,it can take a long time for the proximal nerve to reinnervate the skin and muscle at the injured site.From the perspective of target organs,long-term denervation can cause atrophy of the corresponding skeletal muscle,which leads to abnormal sensory perception and hyperalgesia,and finally,the loss of target organ function.The mechanisms underlying the use of electrical stimulation to treat PNI include the inhibition of synaptic stripping,addressing the excessive excitability of the dorsal root ganglion,alleviating neuropathic pain,improving neurological function,and accelerating nerve regeneration.Electrical stimulation of target organs can reduce the atrophy of denervated skeletal muscle and promote the recovery of sensory function.Findings from the included studies confirm that after PNI,a series of physiological and pathological changes occur in the spinal cord,injury site,and target organs,leading to dysfunction.Electrical stimulation may address the pathophysiological changes mentioned above,thus promoting nerve regeneration and ameliorating dysfunction. 展开更多
关键词 axonal transport brain-derived neurotrophic factor dorsal horn stimulation dorsal root ganglion stimulation electrical stimulation nerve regeneration neuropathic pain peripheral nerve injury spinal cord dorsal stimulation
下载PDF
Distribution of paired immunoglobulin-like receptor B in the nervous system related to regeneration difficulties after unilateral lumbar spinal cord injury 被引量:3
15
作者 Wan-shu Peng Chao Qi +4 位作者 Hong Zhang Mei-ling Gao Hong Wang Fei Ren Xia-qing Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1139-1146,共8页
Paired immunoglobulin-like receptor B(Pir B) is a functional receptor of myelin-associated inhibitors for axonal regeneration and synaptic plasticity in the central nervous system, and thus suppresses nerve regenera... Paired immunoglobulin-like receptor B(Pir B) is a functional receptor of myelin-associated inhibitors for axonal regeneration and synaptic plasticity in the central nervous system, and thus suppresses nerve regeneration. The regulatory effect of Pir B on injured nerves has received a lot of attention. To better understand nerve regeneration inability after spinal cord injury, this study aimed to investigate the distribution of Pir B(via immunofluorescence) in the central nervous system and peripheral nervous system 10 days after injury. Immunoreactivity for Pir B increased in the dorsal root ganglia, sciatic nerves, and spinal cord segments. In the dorsal root ganglia and sciatic nerves, Pir B was mainly distributed along neuronal and axonal membranes. Pir B was found to exhibit a diffuse, intricate distribution in the dorsal and ventral regions. Immunoreactivity for Pir B was enhanced in some cortical neurons located in the bilateral precentral gyri. Overall, the findings suggest a pattern of Pir B immunoreactivity in the nervous system after unilateral spinal transection injury, and also indicate that Pir B may suppress repair after injury. 展开更多
关键词 nerve regeneration paired immunoglobulin-like receptor B myelin inhibitory factor spinal cord injury peripheral nervous system central nervous system cerebral cortex dorsal root ganglion neural regeneration
下载PDF
Identification of motor and sensory fascicles in peripheral nerve trunk using micro-Raman spectroscopy
16
作者 Hu Wang Dongxin Liu +2 位作者 Feiyu Ma Xuedong Li Shixin Du 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第7期547-551,共5页
BACKGROUND: A variety of methods have been used to identify and distinguish motor and sensory nerves. However, their application is limited clinically due to the complex operation, time consumption, and subjectivity.... BACKGROUND: A variety of methods have been used to identify and distinguish motor and sensory nerves. However, their application is limited clinically due to the complex operation, time consumption, and subjectivity. Raman spectroscopy is a minimally invasive method that provides information about molecular structure and constitutions and has been frequently used for tissue identification. OBJECTIVE: To explore a time-efficient method of identifying motor and sensory fascicles in peripheral nerve trunk using laser micro-Raman spectroscopy.DESIGN, TIME AND SETTING: A comparative observation was performed at the Key Laboratory of Excited States Physics in Chinese Academy of Science, Changchun Branch, from October 2004 to October 2005. MATERIALS: JY-HR800 laser confocal micro-Raman spectrometer was purchased from Jobin-Yvon France; 2060-10 argon ion laser was purchased from Spectra-Physics, USA. METHODS: A total of 32 New Zealand rabbits were selected and sacrificed. The roots of spinal nerves were exposed under an operating microscope, and the anterior and posterior roots, approximately 3-5 mm, were dissociated, and frozen as transverse sections of 30 μm thickness. The sections were examined by micro-Raman spectroscopy. MAIN OUTCOME MEASURES: The specific spectral features of motor and sensory fascicles in the Raman spectra. RESULTS: Sections of the same type of nerve fascicle showed reproducibility with similar spectral features. Significant differences in the spectral properties, such as the intensity and breadth of the peak, were found between motor and sensory fascicles in the frequency regions of 1 088, 1 276, 1 439, 1 579, and 1 659 cm^-1. With the peak intensity ratio of 1.06 (/1276//1439) as a standard, we could identify motor fascicles with a sensitivity of 88%, specificity of 94 %, positive predictive value of 93% and negative predictive value of 88%. In the range of 2 700-3 500 cm^-1, the half-peak width of the motor fascicles was narrow and sharp, while that of the sensory fascicles was relatively wider. A total of 91% of the peak features were in accordance with the identification standard. CONCLUSION: Motor and sensory fascicles exhibit different characteristics in Raman spectra, which are constant and reliable. Therefore, it is an effective method to identify nerve fascicles according to the specific spectrum. 展开更多
关键词 SPECTROSCOPY RAMAN spinal nerve root RABBIT
下载PDF
Preconditioning crush increases the survival rate of motor neurons after spinal root avulsion
17
作者 Lin Li Yizhi Zuo Jianwen He 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第5期540-548,共9页
In a previous study, heat shock protein 27 was persistently upregulated in ventral motor neurons following nerve root avulsion or crush. Here, we examined whether the upregulation of heat shock protein 27 would increa... In a previous study, heat shock protein 27 was persistently upregulated in ventral motor neurons following nerve root avulsion or crush. Here, we examined whether the upregulation of heat shock protein 27 would increase the survival rate of motor neurons. Rats were divided into two groups: an avulsion-only group (avtflsion of the L4 lumbar nerve root only) and a crush-avulsion group (the L4 lumbar nerve root was crushed 1 week prior to the avulsion). Immunofluores- cent staining revealed that the survival rate of motor neurons was significantly greater in the crush-avulsion group than in the avulsion-only group, and this difference remained for at least 5 weeks after avulsion. The higher neuronal survival rate may be explained by the upregulation of heat shock protein 27 expression in motor neurons in the crush-avulsion group. Further- more, preconditioning crush greatly attenuated the expression of nitric oxide synthase in the motor neurons. Our findings indicate that the neuroprotective action of preconditioning crush is mediated through the upregulation of heat shock protein 27 expression and the attenuation of neuronal nitric oxide synthase upregulation following avulsion. 展开更多
关键词 nerve regeneration nerve root avulsion spinal nerve root heat shock protein 27 nitric oxide synthase motor neurons fluorescent antibody technique choline acetyltransferase a grant from Education Ministry of Jiangsu Province Excellent Discipline of Jiangsu Province neural regeneration
下载PDF
A novel extradural nerve transfer technique by coaptation of C4 to C5 and C7 to C6 for treating isolated upper trunk avulsion of the brachial plexus
18
作者 Kaixiang Yang Shaohua Zhang +3 位作者 Dawei Ge Tao Sui Hongtao Chen Xiaojian Cao 《The Journal of Biomedical Research》 CAS CSCD 2018年第4期298-304,共7页
The study aimed to demonstrate the feasibility of an extradural nerve anastomosis technique for the restoration of a C5 and C6 avulsion of the brachial plexus.Nine fresh frozen human cadavers were used.The diameters,s... The study aimed to demonstrate the feasibility of an extradural nerve anastomosis technique for the restoration of a C5 and C6 avulsion of the brachial plexus.Nine fresh frozen human cadavers were used.The diameters,sizes,and locations of the extradural spinal nerve roots were observed.The lengths of the extradural spinal nerve roots and the distance between the neighboring nerve root outlets were measured and compared in the cervical segments.In the spinal canal,the ventral and dorsal roots were separated by the dura and arachnoid.The ventral and dorsal roots of C7 had sufficient lengths to anastomose those of C6.The ventral and dorsal of C4 had enough length to be transferred to those of C5,respectively.The feasibility of this extradural nerve anastomosis technique for restoring C5 and C6 avulsion of the brachial plexus in human cadavers was demonstrated in our anatomical study. 展开更多
关键词 brachial plexus nerve transfer spinal nerve roots extradural anastomosis surgical feasibility study
下载PDF
冠状位磁共振成像PROSET水激发序列对多节段腰椎间盘突出症致病节段的诊断价值
19
作者 陈水斌 林毅 +2 位作者 罗爱芳 肖玉辉 欧阳林 《中国CT和MRI杂志》 2024年第5期158-160,共3页
目的评估冠状位磁共振成像和PROSET水激发序列对多节段腰椎间盘突出症致病节段的准确性。方法回顾性分析2019年1月至2022年12月在我院接受手术治疗的66例多节段腰椎间盘突出症患者临床和影像学资料。MRI检查使用3.0TMR扫描仪(荷兰Philip... 目的评估冠状位磁共振成像和PROSET水激发序列对多节段腰椎间盘突出症致病节段的准确性。方法回顾性分析2019年1月至2022年12月在我院接受手术治疗的66例多节段腰椎间盘突出症患者临床和影像学资料。MRI检查使用3.0TMR扫描仪(荷兰Philips Ingenia公司,3.0T),之后使用冠状位PROSET水激发序列进行扫描。收集MRI图像上多节段腰椎间盘突出症的表现及与神经根受压关系。以术中和术后患者疗效为受压神经根节段的判断标准,分析计算冠状位MRI诊断受压神经根的敏感性、特异性、阳性预测值、阴性预测值和准确性。并使用Kappa一致性分析两者诊断一致性。结果66例多节段腰椎间盘突出症患者,MRI图像上共识别到31例患者存在2节段腰椎间盘受累,25例存在3节段受累,10例存在4节段受累,共涉及177个椎间盘。在冠状位腰椎MRI上,椎间盘突出症引起的神经根压迫存在一系列形态学变化,包括神经根凹陷、神经节信号增强、神经根肿胀或神经根断裂。L4/L5神经根起点多位于椎间盘平面(69.81%),L5/S1神经根起点多位于椎间盘上方(72.58%)。共79处神经根受压,其中以L5的神经根受压比例最高82.28%(65/79)。冠状位MRI在多节段椎间盘突出症患者定位致病节段的诊断敏感性为97.4%、特异性为99.3%、阳性预测值为93.7%、阴性预测值为98.6%、准确性为98.6%。冠状位MRI与术中及术后诊断Kappa一致性高(k=0.926)。结论冠状位MRI对定位多节段椎间盘突出症患者的致病节段、受压神经根具有较高准确性,值得今后进一步研究。 展开更多
关键词 多参数磁共振成像 椎间盘突出症 神经根
下载PDF
脊髓背根神经节ZXDC介导CCL2对慢性压迫性 神经损伤小鼠神经性疼痛的作用
20
作者 李文媛 王晓宇 +4 位作者 吕忠孝 刘东明 李艺 王淑影 王莹 《医学研究杂志》 2024年第1期56-62,共7页
目的探讨脊髓背根神经节(dorsal root ganglion,DRG)中转录因子锌指X连锁复制C(zinc finger X-linked duplicated C,ZXDC)介导CCL2/CCR2信号通路对慢性压迫性神经损伤(chronic construction injury model,CCI)诱导神经性疼痛的作用及机... 目的探讨脊髓背根神经节(dorsal root ganglion,DRG)中转录因子锌指X连锁复制C(zinc finger X-linked duplicated C,ZXDC)介导CCL2/CCR2信号通路对慢性压迫性神经损伤(chronic construction injury model,CCI)诱导神经性疼痛的作用及机制。方法构建小鼠坐骨神经慢性压迫性损伤模型,免疫荧光染色、Western blot法和实时荧光定量PCR(RT-qPCR)检测正常情况和CCI造模后DRG中ZXDC及CCL2表达变化;将实验动物分为假手术(Sham)组、CCI+AAV-NC组和CCI+AAV-ZXDC siRNA组;Western blot法和免疫荧光染色检测各组小鼠CCI造模后各时间点DRG中ZXDC、CCL2和CCR2表达,RT-qPCR检测DRG中促炎性细胞因子TNF-α和IL-1βmRNA表达,机械性缩足反射测试检测神经性疼痛行为改变。结果ZXDC表达定位在DRG大、中、小神经元。CCI损伤后1~3天DRG中ZXDC和CCL2蛋白和mRNA表达显著增高,CCI后7天二者表达显著降低,ZXDC和CCL2mRNA表达量呈正相关(P均<0.05)。CCI后3天,与Sham组比较,CCI+AAV-NC组和CCI+AAV-ZXDC siRNA组ZXDC、CCL2、CCR2蛋白表达、TNF-α和IL-1βmRNA表达显著增高,其中CCI+AAV-ZXDC siRNA组较CCI+AAV-NC组ZXDC、CCL2、CCR2蛋白表达、TNF-α和IL-1βmRNA显著降低(P均<0.05)。与Sham组比较,CCI+AAV-ZXDC siRNA组和CCI+AAV-NC组CCI后各时间点机械缩足阈值均显著降低,其中CCI后7天,CCI+AAV-ZXDC siRNA组机械缩足阈值显著高于CCI+AAV-NC组(P均<0.05)。结论脊髓背根神经节ZXDC基因敲减通过抑制CCL2/CCR2信号通路介导CCI诱导的神经性疼痛。 展开更多
关键词 脊髓背根神经节 锌指X连锁复制C CC趋化因子2 神经损伤 慢性神经疼痛
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部