Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propo...Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.展开更多
Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit ...Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.展开更多
The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson ef...The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson effect can be generated in the spin superconductor/normal metal/spin superconductor junctions.Here we study the spin supercurrent in the Josephson junctions consisting of two spin superconductors with noncollinear spin polarizations.For the Josephson junctions with out-of-plane spin polarizations,the possibleπ-state spin supercurrent appears due to the Fermi momentum-splitting Andreev-like reflections at the normal metal/spin superconductor interfaces.For the Josephson junctions with in-plane spin polarizations,the anomalous spin supercurrent appears and is driven by the misorientation angle of the in-plane polarizations.The symmetry analysis shows that the appearance of the anomalous spin Josephson current is possible when the combined symmetry of the spin rotation and the time reversal is broken.展开更多
Terahertz(THz) radiation can be generated due to the instability of THz plasma waves in field-effect transistors(FETs). In this work, we discuss the instability of THz plasma waves in the channel of FETs with spin and...Terahertz(THz) radiation can be generated due to the instability of THz plasma waves in field-effect transistors(FETs). In this work, we discuss the instability of THz plasma waves in the channel of FETs with spin and quantum effects under non-ideal boundary conditions. We obtain a linear dispersion relation by using the hydrodynamic equation, Maxwell equation and spin equation. The influence of source capacitance, drain capacitance, spin effects, quantum effects and channel width on the instability of THz plasma waves under the non-ideal boundary conditions is investigated in great detail. The results of numerical simulation show that the THz plasma wave is unstable when the drain capacitance is smaller than the source capacitance;the oscillation frequency with asymmetric boundary conditions is smaller than that under non-ideal boundary conditions;the instability gain of THz plasma waves becomes lower under non-ideal boundary conditions. This finding provides a new idea for finding efficient THz radiation sources and opens up a new mechanism for the development of THz technology.展开更多
We investigate the stability of magnetization in free layer where the spin torque is induced by the spin Hall effect.In terms of the Landau–Liftshitz–Gilbert equation,we find the low-energy and high-energy equilibri...We investigate the stability of magnetization in free layer where the spin torque is induced by the spin Hall effect.In terms of the Landau–Liftshitz–Gilbert equation,we find the low-energy and high-energy equilibrium states,as well as the saddle points.The stability region is defined in the phase diagram spanned by the current density and the spin Hall angle.The spin Hall effect makes the previous saddle point into a stable state above a critical current.However,in the presence of magnetic field,the spin Hall effect leads to the opposite changes in the stable regions of the two low-energy states.展开更多
Rashba spin splitting(RSS)and quantum spin Hall effect(QSHE)have attracted enormous interest due to their great significance in the application of spintronics.In this work,we theoretically proposed a new two-dimension...Rashba spin splitting(RSS)and quantum spin Hall effect(QSHE)have attracted enormous interest due to their great significance in the application of spintronics.In this work,we theoretically proposed a new two-dimensional(2D)material H–Pb–F with coexistence of giant RSS and quantum spin Hall effec by using the ab initio calculations.Our results show that H–Pb–F possesses giant RSS(1.21 eV·A)and the RSS can be tuned up to 4.16 e V·A by in-plane biaxial strain,which is a huge value among 2D materials.Furthermore,we also noticed that H–Pb–F is a 2D topological insulator(TI)duo to the strong spin–orbit coupling(SOC)interaction,and the large topological gap is up to 1.35 e V,which is large enough for for the observation of topological edge states at room temperature.The coexistence of giant RSS and quantum spin Hall effect greatly broadens the potential application of H–Pb–F in the field of spintronic devices.展开更多
A model of the photonic spin Hall effect(PSHE)in antisymmetric parity-time(APT)metamaterials with incidence of Gaussian beams is proposed here.We derive the displacement expression of the PSHE in APT metamaterials bas...A model of the photonic spin Hall effect(PSHE)in antisymmetric parity-time(APT)metamaterials with incidence of Gaussian beams is proposed here.We derive the displacement expression of the PSHE in APT metamaterials based on the transport properties of Gaussian beams in positive and negative refractive index materials.Furthermore,detailed discussions are provided on the APT scattering matrix,eigenstate ratio,and response near exceptional points in the case of loss or gain.In contrast to the unidirectional non-reflection in parity-time(PT)symmetric systems,the transverse shift that arises from both sides of the APT structure is consistent.By effectively adjusting the parameters of APT materials,we achieve giant displacements of the transverse shift.Finally,we present a multi-layer APT structure consisting of alternating left-handed and right-handed materials.By increasing the number of layers,Bragg oscillations can be generated,leading to an increase in resonant peaks in transverse shift.This study presents a new approach to achieving giant transverse shifts in the APT structure.This lays a theoretical foundation for the fabrication of related nano-optical devices.展开更多
For the past few years,germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology.The main challenges in the development...For the past few years,germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology.The main challenges in the development of modern semiconductor spintronics are the generation,detection,and manipulation of spin currents.Here,the transport characteristics of a spin current generated by spin pumping through a GeBi semiconductor barrier in Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures were investigated systematically.The effective spin-mixing conductance and inverse spin Hall voltage to quantitatively describe the spin transport characteristics were extracted.The spin-injection efficiency in the Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures is comparable to that of the Y_(3)Fe_(5)O_(12)/Pt bilayer,and the inverse spin Hall voltage exponential decays with the increase in the barrier thickness.Furthermore,the band gap of the GeBi layer was tuned by changing the Bi content.The spin-injection efficiency at the YIG/semiconductor interface and the spin transportation within the semiconductor barrier are related to the band gap of the GeBi layer.Our results may be used as guidelines for the fabrication of efficient spin transmission structures and may lead to further studies on the impacts of different kinds of barrier materials.展开更多
The photonic spin Hall effect(SHE)refers to the transverse spin separation of photons with opposite spin angular momentum,after the beam passes through an optical interface or inhomogeneous medium,manifested as the sp...The photonic spin Hall effect(SHE)refers to the transverse spin separation of photons with opposite spin angular momentum,after the beam passes through an optical interface or inhomogeneous medium,manifested as the spin-dependent splitting.It can be considered as an analogue of the SHE in electronic systems:the light’s right-circularly polarized and left-circularly polarized components play the role of the spin-up and spin-down electrons,and the refractive index gradient replaces the electronic potential gradient.Remarkably,the photonic SHE originates from the spin-orbit interaction of the photons and is mainly attributed to two different geometric phases,i.e.,the spin-redirection Rytov-Vlasimirskii-Berry in momentum space and the Pancharatnam-Berry phase in Stokes parameter space.The unique properties of the photonic SHE and its powerful ability to manipulate the photon spin,gradually,make it a useful tool in precision metrology,analog optical computing and quantum imaging,etc.In this review,we provide a brief framework to describe the fundamentals and advances of photonic SHE,and give an overview on the emergent applications of this phenomenon in different scenes.展开更多
The angular acceleration due to the spin effect increases the burning rate of solid propellant and changes the motor performance by increasing the operating pressure and decreasing the burning time. So it is important...The angular acceleration due to the spin effect increases the burning rate of solid propellant and changes the motor performance by increasing the operating pressure and decreasing the burning time. So it is important to know the grain regression taken place in the solid propellant rocket motor in the acceleration field. This study represents the grain regression analysis of two-dimensional axis-symmetric star grain configuration of the solid propellant rocket motor with spin induced acceleration effect and pressure effect on burn rate using geometrical and numerical analysis. While the rocket is spinning, the burn rates on each point of the propellant surface are different with its radial distance, acceleration vector angle and surface slope. With the different burn rates on the propellant surface, we analyze the propellant surface perimeter and port area, and these results are compared with those of constant burn rate and burn rate affected by the chamber pressure.展开更多
The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the ...The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the TR symmetry. The possibility to realize a robust QSH effect by artificial removal of the TR symmetry of the edge states is explored. As a useful tool to characterize topological phases without the TR symmetry, the spin-Chern number theory is introduced.展开更多
We theoretically and experimentally investigate a switchable spin Hall effect(SHE) of light in reflection near the Brewster angle at an air-uniaxial crystal interface.We find a large transverse spin splitting near t...We theoretically and experimentally investigate a switchable spin Hall effect(SHE) of light in reflection near the Brewster angle at an air-uniaxial crystal interface.We find a large transverse spin splitting near the Brewster angle,whose sign can be altered by rotating the optical axis.As an analogy of the SHE in an electronic system,a switchable spin accumulation in the SHE of light is detected.We are able to switch the direction of the spin accumulation by adjusting the optical axis angle of the uniaxial crystal.These findings may give opportunities for photon spin manipulating and developing a new generation of nano-photonic devices.展开更多
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essenc...The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essence of intrinsic spin-orbit coupling is analytically calculated. We find that for each valley and spin, Cs is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states, consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin-orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin-orbit (RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin-orbit coupling, while the other two layers have zero intrinsic spin-orbit coupling. Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.展开更多
In the previous study of longitudinal spin Seebeck effect(LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbers...In the previous study of longitudinal spin Seebeck effect(LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbersome to be easily integrated into modern electrical circuits. Since the laser can be easily focused into a small region, it will be more convenient and friendly to the integrated circuit. In this paper, we systematically investigate the LSSE and spin Hall magnetoresistance(SMR) of the Pt/Y_3 Fe_5 O_(12) heterostructure under focused laser-heating. We find that the extremely large voltage of inverse spin Hall effect(VISHE) can be obtained by reducing the diameter of laser or increasing the number of light spots.Meanwhile, even under the illumination of the ultraviolet light which will excite the electron from the valence band to the conduction band in yttrium iron garnet(YIG), the magnitude of SMR is nearly constant. It indicates that the spin transport behavior of the adjacent Pt is independent of the electron configuration of YIG. The laser-heating method to generate LSSE will be very promising for modern integrated electronic circuits and will promote the application of spin caloritronics in practice.展开更多
The photonic spin Hall effect(PSHE),characterized by two splitting beams with opposite spins,has great potential applications in nano-photonic devices,optical sensing fields,and precision metrology.We present the sign...The photonic spin Hall effect(PSHE),characterized by two splitting beams with opposite spins,has great potential applications in nano-photonic devices,optical sensing fields,and precision metrology.We present the significant enhancement of terahertz(THz)PSHE by taking advantage of the optical Tamm state(OTS)in In Sb-distributed Bragg reflector(DBR)structure.The spin shift of reflected light can be dynamically tuned by the structural parameters(e.g.the thickness)of the InSb-DBR structure as well as the temperature,and the maximum spin shift for a horizontally polarized incident beam at 1.1 THz can reach up to 11.15 mm.Moreover,we propose a THz gas sensing device based on the enhanced PSHE via the strong excitation of OTS for the InSb-DBR structure with a superior intensity sensitivity of 5.873×10^(4)mm/RIU and good stability.This sensor exhibits two orders of magnitude improvement compared with the similar PSHE sensor based on In Sb-supported THz long-range surface plasmon resonance.These findings may provide an alternative way for the enhanced PSHE and offer the opportunity for developing new optical sensing devices.展开更多
We theoretically investigate a switchable spin Hall effect of light (SHEL) in reflection for three specific dispersion relations at an air-anisotropic metamaterial interface. The displacements of horizontal and vert...We theoretically investigate a switchable spin Hall effect of light (SHEL) in reflection for three specific dispersion relations at an air-anisotropic metamaterial interface. The displacements of horizontal and vertical polarization compo- nents vary with the incident angle at different dispersion relations. The transverse displacements can be obtained with the relevant metamaterial whose refractive index can be arbitrarily tailed. The results of the SHEL in the metamaterial provide a new way for manipulating the transverse displacements of a specific polarization component.展开更多
We report a theoretic study on the inverse spin-Hall effect (ISHE) in a two-terminal nano-device that consists of a two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling (RSOC) and two ideal leads....We report a theoretic study on the inverse spin-Hall effect (ISHE) in a two-terminal nano-device that consists of a two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling (RSOC) and two ideal leads. Based on a two-site toy model and Keldysh Green's function method, we derive an analytic result of ISHE, which shows clearly that a nonzero transverse charge current stems from the combined effect of the RSOC, the spin bias, and its spin polarization direction in spin space. Our further numerical calculations in a larger system other than two-site lattice model demonstrate that the transverse charge current, dependent on the strength of the RSOC, the Fermi energy of the system, as well as the system size, can exhibit oscillating behavior and even reverse its sign due to Rashba spin precession. These properties may be helpful for eficient detection of the spin current (spin bias) by measuring the transverse charge current in a spin-orbital coupling system.展开更多
The spin Hall effect has been investigated in 10-nm-thick epitaxial Au(001) single crystal films via H-pattern devices,whose minimum characteristic dimension is about 40 nm. By improving the film quality and optimizin...The spin Hall effect has been investigated in 10-nm-thick epitaxial Au(001) single crystal films via H-pattern devices,whose minimum characteristic dimension is about 40 nm. By improving the film quality and optimizing the in-plane geometry parameters of the devices, we explicitly extract the spin Hall effect contribution from the ballistic and bypass contribution which were previously reported to be dominating the non-local voltage. Furthermore, we calculate a lower limit of the spin Hall angle of 0.08 at room temperature. Our results indicate that the giant spin Hall effect in Au thin films is dominated not by the interior defects scattering, but by the surface scattering. Besides, our results also provide an additional experimental method to determine the magnitude of spin Hall angle unambiguously.展开更多
Spin parity effect on magnetic relaxation by quantum tunneling in the biaxial spin model is studied by taking into account the transverse local stray field. It is shown that the square root time dependence in the even...Spin parity effect on magnetic relaxation by quantum tunneling in the biaxial spin model is studied by taking into account the transverse local stray field. It is shown that the square root time dependence in the even resonance occurs in the presence of a distribution of transverse anisotropic parameters, while the odd resonance always shows exponential relaxation. Magnetic relaxation under a sweeping field is also studied. The variation of the relaxation curve with the increasing distribution width of the local stray field for even resonance is qualitatively different from that of the odd resonance. The theoretical result on even resonance is in agreement with experimental results on Fe8 system, while the prediction for odd resonance awaits the experimental verification.展开更多
The photonic spin Hall effect(SHE)holds great potential applications in manipulating spin-polarized photons.However,the SHE is generally very weak,and previous studies of amplifying photonic SHE were limited to the in...The photonic spin Hall effect(SHE)holds great potential applications in manipulating spin-polarized photons.However,the SHE is generally very weak,and previous studies of amplifying photonic SHE were limited to the incident light in a specific wavelength range.In this paper,we propose a four-layered nanostructure of prism-graphene-air-substrate,and the enhanced photonic SHE of reflected light in broadband range of 0 THz–500 THz is investigated theoretically.The spin shift can be dynamically modulated by adjusting the thickness of air gap,Fermi energy of graphene,and also the incident angle.By optimizing the structural parameter of this structure,the giant spin shift(almost equal to its upper limit,half of the incident beam waist)in broadband range is achieved,covering the terahertz,infrared,and visible range.The difference is that in the terahertz region,the Brewster angle corresponding to the giant spin shift is larger than that of infrared range and visible range.These findings provide us with a convenient and effective way to tune the photonic SHE,and may offer an opportunity for developing new tunable photonic devices in broadband range.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.NSFC 12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology,China(Grant No.YK22-02-08)+3 种基金the Qing Lan Project of Jiangsu Province,Chinathe Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX23_0964)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China(Grant No.ZK21-05-09)。
文摘Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.
基金Project supported by the National Natural Science Foundation of China (Grant No.12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology (Grant No.YK22-02-08)+2 种基金the Qing Lan Project of Jiangsu Provincethe Natural Science Foundation of Jiangsu Province of China (Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China (Grant No.ZK21-05-09)。
文摘Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1403601).
文摘The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson effect can be generated in the spin superconductor/normal metal/spin superconductor junctions.Here we study the spin supercurrent in the Josephson junctions consisting of two spin superconductors with noncollinear spin polarizations.For the Josephson junctions with out-of-plane spin polarizations,the possibleπ-state spin supercurrent appears due to the Fermi momentum-splitting Andreev-like reflections at the normal metal/spin superconductor interfaces.For the Josephson junctions with in-plane spin polarizations,the anomalous spin supercurrent appears and is driven by the misorientation angle of the in-plane polarizations.The symmetry analysis shows that the appearance of the anomalous spin Josephson current is possible when the combined symmetry of the spin rotation and the time reversal is broken.
基金funded by National Natural Science Foundation of China (No. 12065015)the Hongliu First-level Discipline Construction Project of Lanzhou University of Technology。
文摘Terahertz(THz) radiation can be generated due to the instability of THz plasma waves in field-effect transistors(FETs). In this work, we discuss the instability of THz plasma waves in the channel of FETs with spin and quantum effects under non-ideal boundary conditions. We obtain a linear dispersion relation by using the hydrodynamic equation, Maxwell equation and spin equation. The influence of source capacitance, drain capacitance, spin effects, quantum effects and channel width on the instability of THz plasma waves under the non-ideal boundary conditions is investigated in great detail. The results of numerical simulation show that the THz plasma wave is unstable when the drain capacitance is smaller than the source capacitance;the oscillation frequency with asymmetric boundary conditions is smaller than that under non-ideal boundary conditions;the instability gain of THz plasma waves becomes lower under non-ideal boundary conditions. This finding provides a new idea for finding efficient THz radiation sources and opens up a new mechanism for the development of THz technology.
基金the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices of Shanxi University of China(Grant No.KF202203)。
文摘We investigate the stability of magnetization in free layer where the spin torque is induced by the spin Hall effect.In terms of the Landau–Liftshitz–Gilbert equation,we find the low-energy and high-energy equilibrium states,as well as the saddle points.The stability region is defined in the phase diagram spanned by the current density and the spin Hall angle.The spin Hall effect makes the previous saddle point into a stable state above a critical current.However,in the presence of magnetic field,the spin Hall effect leads to the opposite changes in the stable regions of the two low-energy states.
基金the National Natural Science Foundation of China(Grant Nos.11874316,11404275,and 11474244)the National Basic Research Program of China(Grant No.2015CB921103)+2 种基金the Natural Science Foundation of Hunan Province,China(Grant Nos.2016JJ3118 and 2020JJ4244)the Scientific Research Foundation of the Education Bureau of Hunan Province,China(Grant Nos.16K084,17K086,and 21A049)the Fund for the Innovative Research Team in University(Grant No.IRT13093).
文摘Rashba spin splitting(RSS)and quantum spin Hall effect(QSHE)have attracted enormous interest due to their great significance in the application of spintronics.In this work,we theoretically proposed a new two-dimensional(2D)material H–Pb–F with coexistence of giant RSS and quantum spin Hall effec by using the ab initio calculations.Our results show that H–Pb–F possesses giant RSS(1.21 eV·A)and the RSS can be tuned up to 4.16 e V·A by in-plane biaxial strain,which is a huge value among 2D materials.Furthermore,we also noticed that H–Pb–F is a 2D topological insulator(TI)duo to the strong spin–orbit coupling(SOC)interaction,and the large topological gap is up to 1.35 e V,which is large enough for for the observation of topological edge states at room temperature.The coexistence of giant RSS and quantum spin Hall effect greatly broadens the potential application of H–Pb–F in the field of spintronic devices.
基金the Natural Science Foundation of Guangdong Province(Grant Nos.2018A030313480 and 2022A1515012377)。
文摘A model of the photonic spin Hall effect(PSHE)in antisymmetric parity-time(APT)metamaterials with incidence of Gaussian beams is proposed here.We derive the displacement expression of the PSHE in APT metamaterials based on the transport properties of Gaussian beams in positive and negative refractive index materials.Furthermore,detailed discussions are provided on the APT scattering matrix,eigenstate ratio,and response near exceptional points in the case of loss or gain.In contrast to the unidirectional non-reflection in parity-time(PT)symmetric systems,the transverse shift that arises from both sides of the APT structure is consistent.By effectively adjusting the parameters of APT materials,we achieve giant displacements of the transverse shift.Finally,we present a multi-layer APT structure consisting of alternating left-handed and right-handed materials.By increasing the number of layers,Bragg oscillations can be generated,leading to an increase in resonant peaks in transverse shift.This study presents a new approach to achieving giant transverse shifts in the APT structure.This lays a theoretical foundation for the fabrication of related nano-optical devices.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA0718701)the China Postdoctoral Science Foundation(Grant No.2022M722888)the National Natural Science Foundation of China(Grant Nos.12174347 and 12004340).
文摘For the past few years,germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology.The main challenges in the development of modern semiconductor spintronics are the generation,detection,and manipulation of spin currents.Here,the transport characteristics of a spin current generated by spin pumping through a GeBi semiconductor barrier in Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures were investigated systematically.The effective spin-mixing conductance and inverse spin Hall voltage to quantitatively describe the spin transport characteristics were extracted.The spin-injection efficiency in the Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures is comparable to that of the Y_(3)Fe_(5)O_(12)/Pt bilayer,and the inverse spin Hall voltage exponential decays with the increase in the barrier thickness.Furthermore,the band gap of the GeBi layer was tuned by changing the Bi content.The spin-injection efficiency at the YIG/semiconductor interface and the spin transportation within the semiconductor barrier are related to the band gap of the GeBi layer.Our results may be used as guidelines for the fabrication of efficient spin transmission structures and may lead to further studies on the impacts of different kinds of barrier materials.
基金supports from the National Natural Science Foundation of China(Grant No.12174097)the Natural Science Foundation of Hunan Province(Grant No.2021JJ10008).
文摘The photonic spin Hall effect(SHE)refers to the transverse spin separation of photons with opposite spin angular momentum,after the beam passes through an optical interface or inhomogeneous medium,manifested as the spin-dependent splitting.It can be considered as an analogue of the SHE in electronic systems:the light’s right-circularly polarized and left-circularly polarized components play the role of the spin-up and spin-down electrons,and the refractive index gradient replaces the electronic potential gradient.Remarkably,the photonic SHE originates from the spin-orbit interaction of the photons and is mainly attributed to two different geometric phases,i.e.,the spin-redirection Rytov-Vlasimirskii-Berry in momentum space and the Pancharatnam-Berry phase in Stokes parameter space.The unique properties of the photonic SHE and its powerful ability to manipulate the photon spin,gradually,make it a useful tool in precision metrology,analog optical computing and quantum imaging,etc.In this review,we provide a brief framework to describe the fundamentals and advances of photonic SHE,and give an overview on the emergent applications of this phenomenon in different scenes.
文摘The angular acceleration due to the spin effect increases the burning rate of solid propellant and changes the motor performance by increasing the operating pressure and decreasing the burning time. So it is important to know the grain regression taken place in the solid propellant rocket motor in the acceleration field. This study represents the grain regression analysis of two-dimensional axis-symmetric star grain configuration of the solid propellant rocket motor with spin induced acceleration effect and pressure effect on burn rate using geometrical and numerical analysis. While the rocket is spinning, the burn rates on each point of the propellant surface are different with its radial distance, acceleration vector angle and surface slope. With the different burn rates on the propellant surface, we analyze the propellant surface perimeter and port area, and these results are compared with those of constant burn rate and burn rate affected by the chamber pressure.
基金supported by the National Basic Research Program of China (Grant Nos. 2009CB929504,2011CB922103,and 2010CB923400)the National Natural Science Foundation of China (Grant Nos. 11225420,11074110,11174125,11074109,and 91021003)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China,the US NSF (Grant Nos. DMR-0906816 and DMR-1205734)Princeton MRSEC (Grant No. DMR-0819860)
文摘The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the TR symmetry. The possibility to realize a robust QSH effect by artificial removal of the TR symmetry of the edge states is explored. As a useful tool to characterize topological phases without the TR symmetry, the spin-Chern number theory is introduced.
基金Project supported by the National Natural Science Foundation of China (Grants Nos. 61025024 and 11074068)the Hunan Provincial Natural Science Foundation of China (Grant No. 12JJ7005)
文摘We theoretically and experimentally investigate a switchable spin Hall effect(SHE) of light in reflection near the Brewster angle at an air-uniaxial crystal interface.We find a large transverse spin splitting near the Brewster angle,whose sign can be altered by rotating the optical axis.As an analogy of the SHE in an electronic system,a switchable spin accumulation in the SHE of light is detected.We are able to switch the direction of the spin accumulation by adjusting the optical axis angle of the uniaxial crystal.These findings may give opportunities for photon spin manipulating and developing a new generation of nano-photonic devices.
基金Majeed Ur Rehman acknowledges the support from the Chinese Academy of Sciences(CAS)and TWAS for his Ph.D.studies at the University of Science and Technology,China in the category of 2016 CAS-TWAS President’s Fellowship Awardee(Grant No.2016-156)
文摘The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essence of intrinsic spin-orbit coupling is analytically calculated. We find that for each valley and spin, Cs is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states, consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin-orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin-orbit (RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin-orbit coupling, while the other two layers have zero intrinsic spin-orbit coupling. Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604265,51471134,51572222,and 11704386)the Fundamental Research Funds for the Central Universities,China(Grant Nos.3102018zy044 and 3102017jc01001)
文摘In the previous study of longitudinal spin Seebeck effect(LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbersome to be easily integrated into modern electrical circuits. Since the laser can be easily focused into a small region, it will be more convenient and friendly to the integrated circuit. In this paper, we systematically investigate the LSSE and spin Hall magnetoresistance(SMR) of the Pt/Y_3 Fe_5 O_(12) heterostructure under focused laser-heating. We find that the extremely large voltage of inverse spin Hall effect(VISHE) can be obtained by reducing the diameter of laser or increasing the number of light spots.Meanwhile, even under the illumination of the ultraviolet light which will excite the electron from the valence band to the conduction band in yttrium iron garnet(YIG), the magnitude of SMR is nearly constant. It indicates that the spin transport behavior of the adjacent Pt is independent of the electron configuration of YIG. The laser-heating method to generate LSSE will be very promising for modern integrated electronic circuits and will promote the application of spin caloritronics in practice.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175107 and 12004194)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY220030)
文摘The photonic spin Hall effect(PSHE),characterized by two splitting beams with opposite spins,has great potential applications in nano-photonic devices,optical sensing fields,and precision metrology.We present the significant enhancement of terahertz(THz)PSHE by taking advantage of the optical Tamm state(OTS)in In Sb-distributed Bragg reflector(DBR)structure.The spin shift of reflected light can be dynamically tuned by the structural parameters(e.g.the thickness)of the InSb-DBR structure as well as the temperature,and the maximum spin shift for a horizontally polarized incident beam at 1.1 THz can reach up to 11.15 mm.Moreover,we propose a THz gas sensing device based on the enhanced PSHE via the strong excitation of OTS for the InSb-DBR structure with a superior intensity sensitivity of 5.873×10^(4)mm/RIU and good stability.This sensor exhibits two orders of magnitude improvement compared with the similar PSHE sensor based on In Sb-supported THz long-range surface plasmon resonance.These findings may provide an alternative way for the enhanced PSHE and offer the opportunity for developing new optical sensing devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61025024 and 11074068)
文摘We theoretically investigate a switchable spin Hall effect of light (SHEL) in reflection for three specific dispersion relations at an air-anisotropic metamaterial interface. The displacements of horizontal and vertical polarization compo- nents vary with the incident angle at different dispersion relations. The transverse displacements can be obtained with the relevant metamaterial whose refractive index can be arbitrarily tailed. The results of the SHEL in the metamaterial provide a new way for manipulating the transverse displacements of a specific polarization component.
基金Supported by National Natural Science Foundation of China under Grant No.10704016National Natural Science Foundation of Jiangsu Province under Grant No.BK2007100New Teacher Fund of Ministry of Education of China under Grant No.20070286036
文摘We report a theoretic study on the inverse spin-Hall effect (ISHE) in a two-terminal nano-device that consists of a two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling (RSOC) and two ideal leads. Based on a two-site toy model and Keldysh Green's function method, we derive an analytic result of ISHE, which shows clearly that a nonzero transverse charge current stems from the combined effect of the RSOC, the spin bias, and its spin polarization direction in spin space. Our further numerical calculations in a larger system other than two-site lattice model demonstrate that the transverse charge current, dependent on the strength of the RSOC, the Fermi energy of the system, as well as the system size, can exhibit oscillating behavior and even reverse its sign due to Rashba spin precession. These properties may be helpful for eficient detection of the spin current (spin bias) by measuring the transverse charge current in a spin-orbital coupling system.
基金supported by the National Basic Research Program of China(Grant Nos.2015CB921400 and 2011CB921802)the National Natural Science Foundation of China(Grant Nos.11374057,11434003,and 11421404)
文摘The spin Hall effect has been investigated in 10-nm-thick epitaxial Au(001) single crystal films via H-pattern devices,whose minimum characteristic dimension is about 40 nm. By improving the film quality and optimizing the in-plane geometry parameters of the devices, we explicitly extract the spin Hall effect contribution from the ballistic and bypass contribution which were previously reported to be dominating the non-local voltage. Furthermore, we calculate a lower limit of the spin Hall angle of 0.08 at room temperature. Our results indicate that the giant spin Hall effect in Au thin films is dominated not by the interior defects scattering, but by the surface scattering. Besides, our results also provide an additional experimental method to determine the magnitude of spin Hall angle unambiguously.
基金National Natural Science Foundation of China under Grant No.10575045
文摘Spin parity effect on magnetic relaxation by quantum tunneling in the biaxial spin model is studied by taking into account the transverse local stray field. It is shown that the square root time dependence in the even resonance occurs in the presence of a distribution of transverse anisotropic parameters, while the odd resonance always shows exponential relaxation. Magnetic relaxation under a sweeping field is also studied. The variation of the relaxation curve with the increasing distribution width of the local stray field for even resonance is qualitatively different from that of the odd resonance. The theoretical result on even resonance is in agreement with experimental results on Fe8 system, while the prediction for odd resonance awaits the experimental verification.
基金Project supported by the National Natural Science Foundation of China(Grant No.11405089)the General Program of the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20171440)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.SJKY190779)the Natural Science Foundation of Nanjing University of Posts and Telecommunications,China(Grant Nos.NY218039 and NY220030).
文摘The photonic spin Hall effect(SHE)holds great potential applications in manipulating spin-polarized photons.However,the SHE is generally very weak,and previous studies of amplifying photonic SHE were limited to the incident light in a specific wavelength range.In this paper,we propose a four-layered nanostructure of prism-graphene-air-substrate,and the enhanced photonic SHE of reflected light in broadband range of 0 THz–500 THz is investigated theoretically.The spin shift can be dynamically modulated by adjusting the thickness of air gap,Fermi energy of graphene,and also the incident angle.By optimizing the structural parameter of this structure,the giant spin shift(almost equal to its upper limit,half of the incident beam waist)in broadband range is achieved,covering the terahertz,infrared,and visible range.The difference is that in the terahertz region,the Brewster angle corresponding to the giant spin shift is larger than that of infrared range and visible range.These findings provide us with a convenient and effective way to tune the photonic SHE,and may offer an opportunity for developing new tunable photonic devices in broadband range.