Helical metal-organic frameworks(MOFs)were used as templates or precursors to fabricate helical carbon nanorods(HCNRs)for the first time.Helical carbon contains many topological defects such as pentagonal or heptagona...Helical metal-organic frameworks(MOFs)were used as templates or precursors to fabricate helical carbon nanorods(HCNRs)for the first time.Helical carbon contains many topological defects such as pentagonal or heptagonal carbons,which have the potential to facilitate oxygen reduction reactions(ORR).HCNRs show more positive onset/halfwave reduction potentials and higher limited current density than straight carbon nanorods(SCNRs).They also exhibit four-electron oxygen reduction in tests of ORR,while the alternative SCNRs prefer a two-electron reduction mechanism.Experimental and theoretical studies reveal that these enhanced ORR activities can be attributed to pentagon/heptagon defects in HCNRs.This work provides an effective strategy to synthesize helical,defect-rich carbon materials and opens up a new perspective for utilization of a spiral effect for the development of more effective electrocatalysts.展开更多
A dry-gas seal system is a non-contact seal technology that is widely used in different industrial applications.Spiral-groove dry-gas seal utilizes fluid dynamic pressure effects to realize the seal and lubrication pr...A dry-gas seal system is a non-contact seal technology that is widely used in different industrial applications.Spiral-groove dry-gas seal utilizes fluid dynamic pressure effects to realize the seal and lubrication processes,while forming a high pressure gas film between two sealing faces due to the deceleration of the gas pumped in or out.There is little research into the effects and the influence on seal performance,if the grooves and the gas film are at the micro-scale.This paper investigates the micro-scale effects on spiral-groove dry-gas seal performance in a numerical solution of a corrected Reynolds equation.The Reynolds equation is discretized by means of the finite difference method with the second order scheme and solved by the successive-over-relaxation(SOR) iterative method.The Knudsen number of the flow in the sealing gas film is changed from 0.005 to 0.120 with a variation of film depth and sealing pressure.The numerical results show that the average pressure in the gas film and the sealed gas leakage increase due to micro-scale effects.The open force is enlarged,while the gas film stiffness is significantly decreased due to micro-scale effects.The friction torque and power consumption remain constant,even in low sealing pressure and spin speed conditions.In this paper,the seal performance at different rotor face spin speeds is also described.The proposed research clarifies the micro-scale effects in a spiral-groove dry-gas seal and their influence on seal performance,which is expected to be useful for the improvement of the design of dry-gas seal systems operating in the slip flow regime.展开更多
The analytic formulae of probability distribution of spiral plane modes for the Whittaker-Gaussian (WG) beams with orbital angular momentum (OAM) in strong turbulence regime are modeled based on the modified Rytov...The analytic formulae of probability distribution of spiral plane modes for the Whittaker-Gaussian (WG) beams with orbital angular momentum (OAM) in strong turbulence regime are modeled based on the modified Rytov approximation. Numerical results show that the erosstalk range of OAM modes in the vicinity of signal mode increases with the increasing refractive-index construction parameter. However, effects of change of the width of the Gaussian envelope and the parameter Wo of WG beams on normalization energy weight of signal mode can be ignored. We find theoretically that signal spiral plane mode of WG beams at each OAM level approximatively has the same normalization energy weight, implying that the channels with WG (pseudo non-diffraction) beam have higher channel capacity than the channels with the Laguerre-Gaussian beam.展开更多
The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology has been investigated deeply. The fabricated 1-nH spiral inductor on SiC substrate demonstrates a self-resonant frequency o...The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology has been investigated deeply. The fabricated 1-nH spiral inductor on SiC substrate demonstrates a self-resonant frequency of 51.6 GHz, with a peak Q-fact of 12.14 at 22.1 GHz. From the S-parameters measurements, the exponential decay phenomenon is observed for L, Q-factor, and SRF with the air-bridge height decreasing, and an analytic expression is concluded to exactly fit the measured data which can be used to predict the performance of the spiral inductor. All the coefficients in the formula have specific meaning. By means of establishing the lumped model, the parasitic coupling capacitance of the air-bridge has been extracted and presents the exponential decay with the air-bridge heights decreasing which indicates that this capacitor is directly related to the coupling effect of the air-bridge. Through the electromagnetic field distribution simulation, the details of the electric field around the air-bridge have been presented which demonstrate the formation and the variation principles of the coupling effect.展开更多
Numerical simulation concerning the forming and welding process of spiral welded pipe was conducted, which included three steps : the first step was the stress analysis when the spiral was formed, and then the stress...Numerical simulation concerning the forming and welding process of spiral welded pipe was conducted, which included three steps : the first step was the stress analysis when the spiral was formed, and then the stress was regarded as initial condition of melding during the temperature field analysis in the process of welding, the last step was the thermal stress analysis of the weld seam after the welding was over. Moreover, when the steel strip was pushed, the stress was also calculated by non-linearity contact technology using Abaqus Software. By finite element modeling and calculating of the forming and welding process of the spiral welded pipe, the key points of the multi-fields synthetic simulating were studied and discussed.展开更多
An empirical effective medium approximation that provides a homogeneous equivalent for a layer of interconnects un-derneath a spiral inductor is presented. When used as part of a numerical 3D model of the inductor, th...An empirical effective medium approximation that provides a homogeneous equivalent for a layer of interconnects un-derneath a spiral inductor is presented. When used as part of a numerical 3D model of the inductor, this approach yields a faster simulation that uses less memory, yet still predicts the quality factor and inductance to within 1%. We expect this technique to find use in the electromagnetic modeling of System-on-Chip.展开更多
The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the...The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.展开更多
Heat exchangers have its major application in automobile, air condition, refrigerator, power plants, and many others. Heat transfer characteristics and performance of Copper spiral heat exchanger are investigated and ...Heat exchangers have its major application in automobile, air condition, refrigerator, power plants, and many others. Heat transfer characteristics and performance of Copper spiral heat exchanger are investigated and compared with pure water. Nanofluid can enhance thermos-physical properties. Experiment is carried out for water based SiO2 Nanofluid with 15 nm average sized nanoparticle at varying air velocity and mass flow rate of fluid to investigate its effect on heat transfer coefficient. From the experimental data, a closed form solution for Nusselt number has been calculated using ∈-NTU method. A new correlation has been proposed as a function of Reynolds number and Prandtl number. The heat transfer rate, effectiveness, has been significantly higher compared to pure water and with increasing volume fraction of nanoparticles.展开更多
Horizontal velocity spirals with a clockwise rotation(downward looking) rate of 1.7?m^(-1), on average, were observed in the western and northern Yellow Sea from December 2006 to February 2007. With the observed therm...Horizontal velocity spirals with a clockwise rotation(downward looking) rate of 1.7?m^(-1), on average, were observed in the western and northern Yellow Sea from December 2006 to February 2007. With the observed thermal wind relation,the beta-spiral theory was used to explain the dynamics of spirals. It was found that the horizontal diffusion of geostrophic vortex stretching is likely to be a major mechanism for generating geostrophic spirals. Vertical advection associated with surface/bottom Ekman pumping and topography-induced upwelling is too weak to support these spirals. Strong wind stirring and large heat loss in wintertime lead to weak stratification and diminish the effects of vertical advection. The cooling effect and vertical diffusion are offset by an overwhelming contribution of horizontal diffusion in connection with vortex stretching. The Richardson number-dependent vertical eddy diffusivity reaches a magnitude of 10^(-4) m^2 s^(-1) on average. An eddy diffusivity of 2870 m^2 s^(-1) is required for dynamic balance by estimating the residual term. This obtained value of 10-4 m^2 s^(-1) is in good agreement with the estimation in terms of observed eddy activities. The suppressed and unsuppressed diffusivities in the observation region are 2752 and 2881 m^2 s^(-1), respectively, which supports a closed budget for velocity rotation.展开更多
基金financial support from the National Key Research and Development Program of China(2018YFA0208600 and 2017YFA0700100)the Key Research Program of Frontier Science,CAS(QYZDJ-SSW-SLH045)+2 种基金the National Natural Science Foundation of China(21671188,21871263 and 22033008)the Strategic Priority Research Program of CAS(XDB20000000)the Youth Innovation Promotion Association,CAS(2014265)。
文摘Helical metal-organic frameworks(MOFs)were used as templates or precursors to fabricate helical carbon nanorods(HCNRs)for the first time.Helical carbon contains many topological defects such as pentagonal or heptagonal carbons,which have the potential to facilitate oxygen reduction reactions(ORR).HCNRs show more positive onset/halfwave reduction potentials and higher limited current density than straight carbon nanorods(SCNRs).They also exhibit four-electron oxygen reduction in tests of ORR,while the alternative SCNRs prefer a two-electron reduction mechanism.Experimental and theoretical studies reveal that these enhanced ORR activities can be attributed to pentagon/heptagon defects in HCNRs.This work provides an effective strategy to synthesize helical,defect-rich carbon materials and opens up a new perspective for utilization of a spiral effect for the development of more effective electrocatalysts.
基金supported by Scientific Research Foundation for Returned Scholars of Ministry of Education of China
文摘A dry-gas seal system is a non-contact seal technology that is widely used in different industrial applications.Spiral-groove dry-gas seal utilizes fluid dynamic pressure effects to realize the seal and lubrication processes,while forming a high pressure gas film between two sealing faces due to the deceleration of the gas pumped in or out.There is little research into the effects and the influence on seal performance,if the grooves and the gas film are at the micro-scale.This paper investigates the micro-scale effects on spiral-groove dry-gas seal performance in a numerical solution of a corrected Reynolds equation.The Reynolds equation is discretized by means of the finite difference method with the second order scheme and solved by the successive-over-relaxation(SOR) iterative method.The Knudsen number of the flow in the sealing gas film is changed from 0.005 to 0.120 with a variation of film depth and sealing pressure.The numerical results show that the average pressure in the gas film and the sealed gas leakage increase due to micro-scale effects.The open force is enlarged,while the gas film stiffness is significantly decreased due to micro-scale effects.The friction torque and power consumption remain constant,even in low sealing pressure and spin speed conditions.In this paper,the seal performance at different rotor face spin speeds is also described.The proposed research clarifies the micro-scale effects in a spiral-groove dry-gas seal and their influence on seal performance,which is expected to be useful for the improvement of the design of dry-gas seal systems operating in the slip flow regime.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No JUSRP51517the Graduate Student Research Innovation Project of Jiangsu-Province General University under Grant No KYLX15_1187
文摘The analytic formulae of probability distribution of spiral plane modes for the Whittaker-Gaussian (WG) beams with orbital angular momentum (OAM) in strong turbulence regime are modeled based on the modified Rytov approximation. Numerical results show that the erosstalk range of OAM modes in the vicinity of signal mode increases with the increasing refractive-index construction parameter. However, effects of change of the width of the Gaussian envelope and the parameter Wo of WG beams on normalization energy weight of signal mode can be ignored. We find theoretically that signal spiral plane mode of WG beams at each OAM level approximatively has the same normalization energy weight, implying that the channels with WG (pseudo non-diffraction) beam have higher channel capacity than the channels with the Laguerre-Gaussian beam.
基金supported by the National Natural Science Foundation of China(Grant Nos.61334002 and 61474091)the National High Technology Research and Development Program of China(Grant No.2015AA016801)
文摘The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology has been investigated deeply. The fabricated 1-nH spiral inductor on SiC substrate demonstrates a self-resonant frequency of 51.6 GHz, with a peak Q-fact of 12.14 at 22.1 GHz. From the S-parameters measurements, the exponential decay phenomenon is observed for L, Q-factor, and SRF with the air-bridge height decreasing, and an analytic expression is concluded to exactly fit the measured data which can be used to predict the performance of the spiral inductor. All the coefficients in the formula have specific meaning. By means of establishing the lumped model, the parasitic coupling capacitance of the air-bridge has been extracted and presents the exponential decay with the air-bridge heights decreasing which indicates that this capacitor is directly related to the coupling effect of the air-bridge. Through the electromagnetic field distribution simulation, the details of the electric field around the air-bridge have been presented which demonstrate the formation and the variation principles of the coupling effect.
基金Funded by Scientific Research Key Program of Beijing Municipal Commission of Education(KZ200610017010)Beijing Elitist Program Project(20041D0500517).
文摘Numerical simulation concerning the forming and welding process of spiral welded pipe was conducted, which included three steps : the first step was the stress analysis when the spiral was formed, and then the stress was regarded as initial condition of melding during the temperature field analysis in the process of welding, the last step was the thermal stress analysis of the weld seam after the welding was over. Moreover, when the steel strip was pushed, the stress was also calculated by non-linearity contact technology using Abaqus Software. By finite element modeling and calculating of the forming and welding process of the spiral welded pipe, the key points of the multi-fields synthetic simulating were studied and discussed.
文摘An empirical effective medium approximation that provides a homogeneous equivalent for a layer of interconnects un-derneath a spiral inductor is presented. When used as part of a numerical 3D model of the inductor, this approach yields a faster simulation that uses less memory, yet still predicts the quality factor and inductance to within 1%. We expect this technique to find use in the electromagnetic modeling of System-on-Chip.
基金supported by Scientific Research Foundation for Returned Scholars,Ministry of Education of China
文摘The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.
文摘Heat exchangers have its major application in automobile, air condition, refrigerator, power plants, and many others. Heat transfer characteristics and performance of Copper spiral heat exchanger are investigated and compared with pure water. Nanofluid can enhance thermos-physical properties. Experiment is carried out for water based SiO2 Nanofluid with 15 nm average sized nanoparticle at varying air velocity and mass flow rate of fluid to investigate its effect on heat transfer coefficient. From the experimental data, a closed form solution for Nusselt number has been calculated using ∈-NTU method. A new correlation has been proposed as a function of Reynolds number and Prandtl number. The heat transfer rate, effectiveness, has been significantly higher compared to pure water and with increasing volume fraction of nanoparticles.
基金funded by the National Natural Science Foundation of China (Grant Nos.41306003 and 41430963)the Fundamental Research Funds for Central Universities (Grant Nos.0905-841313038,1100-841262028 and 0905-201462003)+1 种基金the China Postdoctoral Science Foundation (Grant No.2013M531647)the Natural Science Foundation of Shandong (Grant No.BS2013HZ015)
文摘Horizontal velocity spirals with a clockwise rotation(downward looking) rate of 1.7?m^(-1), on average, were observed in the western and northern Yellow Sea from December 2006 to February 2007. With the observed thermal wind relation,the beta-spiral theory was used to explain the dynamics of spirals. It was found that the horizontal diffusion of geostrophic vortex stretching is likely to be a major mechanism for generating geostrophic spirals. Vertical advection associated with surface/bottom Ekman pumping and topography-induced upwelling is too weak to support these spirals. Strong wind stirring and large heat loss in wintertime lead to weak stratification and diminish the effects of vertical advection. The cooling effect and vertical diffusion are offset by an overwhelming contribution of horizontal diffusion in connection with vortex stretching. The Richardson number-dependent vertical eddy diffusivity reaches a magnitude of 10^(-4) m^2 s^(-1) on average. An eddy diffusivity of 2870 m^2 s^(-1) is required for dynamic balance by estimating the residual term. This obtained value of 10-4 m^2 s^(-1) is in good agreement with the estimation in terms of observed eddy activities. The suppressed and unsuppressed diffusivities in the observation region are 2752 and 2881 m^2 s^(-1), respectively, which supports a closed budget for velocity rotation.