The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Rey...The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Reynolds numbers(Re) and structural parameters pitch(s) and spiral diameter(D) are analyzed.Results indicate that the average Nusselt numberNu and friction factorNu increase with an increase in Re, and decrease with an increase in D/d(tube diameter). In terms of the structural parameter s/d, it is found that as s/d increases, the Nu first increase, and then decrease. and the critical structural parameter is s/d = 4. Compared with the straight tube, the SMST can improve Nu by 34.8% at best, while it can improve Nu by 102.1% at most. In addition, a comprehensive heat transfer coefficient is applied to analyze the thermodynamic properties of SMST. With the optimal structural parameters of D/d = 6 and s/d = 4, the comprehensive heat transfer factor of supercritical pressure hydrocarbon fuel in the SMST can reach 1.074. At last, correlations of the average Nusselt number and friction factor are developed to predict the flow and heat transfer of n-decane at supercritical pressure.展开更多
Conical spiral tube bundle are universally used in heat transfer enhancement in heat exchangers.The heat transfer and resistance of the tube bundle are affected greatly by the conical structure,so the analysis of it i...Conical spiral tube bundle are universally used in heat transfer enhancement in heat exchangers.The heat transfer and resistance of the tube bundle are affected greatly by the conical structure,so the analysis of it is necessary.In order to a further evaluation,the heat transfer and resistance characteristics of conical spiral tube bundle are investigated with regression analysis based on numerical simulation data.The correlations of heat transfer and pressure drop of conical spiral tube bundle are proposed both in laminar and turbulent fluid flow.On the based of the field synergy principle,the synergy of four vectors,the velocity,the velocity gradient,the temperature gradient and the pressure gradient,are calculated and discussed via the user defined function(UDF) program.The synergy angles β and θ,which respectively denote the performance of heat transfer enhancement and pressure drop of the conical spiral tube bundle,are analyzed.Finally,the comprehensive performance of the conical spiral tube is evaluated by the synergy angle γ and all of the three synergy angles of conical spiral tube bundle are compared to both bare tube and thin cylinder-interpolated tube.The analysis of the synergy angles shows that the heat transfer enhancement and pressure drop of conical spiral tube bundle are smaller than that of the thin cylinder-interpolated tube,while the comprehensive performance of conical spiral tube bundle is greater.The analysis of the heat transfer and pressure drop of conical spiral tube is valuable and instructional on the design and optimum of conical spiral tube bundle heat exchangers.展开更多
Being aimed at the inside wall wrinkling and sinking phenomenon of palladium-yttrium alloy thin wall spiral tube used for preparation of high purity hydrogen, extraction of hydrogen isotope, and purification and separ...Being aimed at the inside wall wrinkling and sinking phenomenon of palladium-yttrium alloy thin wall spiral tube used for preparation of high purity hydrogen, extraction of hydrogen isotope, and purification and separation of hydrogen in the winding process, this article analyzed the reasons for above phenomena, established a numerical simulation model of winding process of above tube, using elastic-plastic Finite Element method analyzed the max. tensile stress and max. compression stress and their locations, thereby provides a theory base for the control of working forming course of thin wall spiral tube.展开更多
Spiral tube heat exchangers have been widely used in phase change energy storage due to the compact structure and large heat transfer area.Therefore,this study numerically analyzes the effects of spiral tube diameter,...Spiral tube heat exchangers have been widely used in phase change energy storage due to the compact structure and large heat transfer area.Therefore,this study numerically analyzes the effects of spiral tube diameter,number of rotations,and unsteady heat source on the melting process in conical spiral tube energy storage tanks using Fluent software.The results indicate that when the tube diameter is increased from 8 to 11 mm and the number of rotations is increased from 5 to 8,the melting time is extended by 15.74%and 17.83%,respectively.The energy storage capacity increases by 0.64%and 1.83%,respectively.The average energy storage rate decreases by 13.05%and 13.58%,respectively.Furthermore,the sinusoidal wave heat source with small heat source periods has little effect on the melting process,while large heat source periods can significantly accelerate the melting.And the influence of amplitudes on the thermal storage performance under large heat source periods is more obvious.When the heat source period is increased from 2 to 160 min and the amplitude is increased from 5 to 20 K,the melting time is reduced by 24.50%and 17.20%,respectively.The total energy storage capacity decreases by 6.36%and increases by 1.62%,respectively.The average energy storage rate increases by 24.03%and 22.74%,respectively.The study provides guidance for the performance optimization of spiral tube phase change systems.展开更多
Latent heat thermal energy storage systems can effectively fill the gap between energy storage and application, and phase-change materials(PCMs) are crucial media for storing thermal energy. Therefore, how to maximize...Latent heat thermal energy storage systems can effectively fill the gap between energy storage and application, and phase-change materials(PCMs) are crucial media for storing thermal energy. Therefore, how to maximize the utilization efficiency of PCMs has attracted widespread attention. In this study, the thermal behavior of two thermal storage units employing a spiral tube and straight tube as heat transfer tubes was experimentally researched and comprehensively compared. Stefan numbers were used to investigate the impact of the heat transfer fluid temperature on the PCM melting process. The temperature distribution of PCMs,temporal evolution of the melting front, and temperature variations of measurement points in both tanks were compared. The average temperature and energy storage of PCMs were calculated to evaluate the thermal performance of different configurations. The results indicate that compared to cylinder B(with a straight tube), the energy storage in cylinder A(with a spiral tube)increased by 78.8%, 38.5%, and 19.6% at Stefan numbers of 1.08, 1.28, and 1.48, respectively. Moreover, the increase in the Stefan number simultaneously ascended the average temperature and energy storage of PCMs in containers A and B, causing the shortening of the melting time. When the Stefan number was increased from 1.28 to 1.48, the storage capacity was raised from3233.18 to 3463.8 k J, and the total melting time was decreased by 34.2% from 547.5 to 360 min after the PCM was loaded in cylinder A. The research results lay a certain foundation for a deeper study of enhanced heat transfer in spiral tubes.展开更多
Heat transfer enhancement is achieved by flow-induced vibration in elastic tube bundles heat exchangers. For a further understanding of heat transfer enhancement mechanism and tube structure optimization, it is of imp...Heat transfer enhancement is achieved by flow-induced vibration in elastic tube bundles heat exchangers. For a further understanding of heat transfer enhancement mechanism and tube structure optimization, it is of importance to study the vibration characteristics of fluid-structure interaction of tube bundles. The finite element method is applied in the study of fluid-structure interaction of a new type elastic heat transfer element, i.e., the dimensional conical spiral tube bundle. The vibration equation and element matrix for the tube are set up by the regulation of different helical angles and coordinate transformation, together with the simplification of the joint body of the two pipes. The vibration characteristics of conical spiral tube bundle are analyzed at different velocities of the tube-side flow, and the critical velocity of vibration buckling is obtained. The results show that the natural frequency of the tube bundle decreases as the flow speed increases, especially for the first order frequency, and the critical velocity of vibration buckling is between 1.2665 m/s-1.2669 m/s. The vibration mode of conical spiral tube bundle is mainly z-axial, which is feasible to be induced and controlled.展开更多
Conical spiral tube bundles are widely used in enhancing the heat transfer via the flow-induced vibration in heat exchangers. The shell side flow-induced vibration of the conical spiral tube bundle is experimentally i...Conical spiral tube bundles are widely used in enhancing the heat transfer via the flow-induced vibration in heat exchangers. The shell side flow-induced vibration of the conical spiral tube bundle is experimentally investigated in this paper. The experi- ment table was built and the operational modes, the vibration parameters of the tube bundle were analyzed. The results show that, the operational mode frequencies of the conical spiral tube are decreased as the shell-side fluid flow velocity increases, especially for the first order frequency. Within the parameter range of this experiment, the real working frequency of the conical spiral tube is between the 1 st and the 2nd operational modes, and the free end vibration amplitude of the tube bundle increases greatly when the shell side fluid flow velocity exceeds a critical value.展开更多
The current research of the valveless piezoelectric pump focuses on increasing the flow rate and pressure differential. Compared with the valve piezoelectric pump, the valveless one has excellent performances in simpl...The current research of the valveless piezoelectric pump focuses on increasing the flow rate and pressure differential. Compared with the valve piezoelectric pump, the valveless one has excellent performances in simple structure, low cost, and easy miniaturization. So, their important development trend is the mitigation of their weakness, and the multi-function integration. The flow in a spiral tube element is sensitive to the element attitude caused by the Coriolis force, and that a valveless piezoelectric pump is designed by applying this phenomenon. The pump has gyroscopic effect, and has both the actuator function of fluid transfer and the sensor function, which can obtain the angular velocity when its attitude changes. First, the present paper analyzes the flow characteristics in the tube, obtains the calculation formula for the pump flow, and identifies the relationship between pump attitude and flow, which clarifies the impact of flow and driving voltage, frequency, spiral line type and element attitude, and verifies the gyroscopic effect of the pump. Then, the finite element simulation is used to verify the theory. Finally, a pump is fabricated for experimental testing of the relationship between pump attitude and pressure differential. Experimental results show that when Archimedes spiral θ=4π is selected for the tube design, and the rotation speed of the plate is 70 r/min, the pressure differential is 88.2 Pa, which is 1.5 times that of 0 r/min rotation speed. The spiral-tube-type valveless piezoelectric pump proposed can turn the element attitude into a form of pressure output, which is important for the multi-function integration of the valveless piezoelectric pump and for the development of civil gyroscope in the future.展开更多
The conical spiral tube bundle is a new type of heat transfer elements used to enhance heat transfer through flow-induced vibration. The effect of the external fluid flow on the transverse vibration of the conical spi...The conical spiral tube bundle is a new type of heat transfer elements used to enhance heat transfer through flow-induced vibration. The effect of the external fluid flow on the transverse vibration of the conical spiral tube bundle is investigated with a mathematical method proposed in this article. Firstly, the natural vibration of the tube bundle is obtained by the hammering excitation method and the mode shapes of the transverse vibration are discussed. Then the effect of the external fluid flow on the transverse vibration of tube bundle is analyzed by a combination of experimental data, empirical correlations and FEM. The results show that in the frequency range from 0 Hz to 50 Hz, there exist six transverse vibrations. The external fluid flow has a significant effect on the frequency of the tube's transverse vibration, which are decreased by about 18% to 24% when the external fluid flow speed is 0.3 m/s.展开更多
Heat and mass transfer of a LiBr/water absorption heat pump system(AHP)was experimentally studied during working a heating-up mode.The examination was performed for a single spiral tube,which was simulated for heat tr...Heat and mass transfer of a LiBr/water absorption heat pump system(AHP)was experimentally studied during working a heating-up mode.The examination was performed for a single spiral tube,which was simulated for heat transfer tubes in an absorber.The inside and outside of the tube were subjected to a film flow of the absorption liquid and exposed to the atmosphere,respectively.The maximum temperature of the absorption liquid was observed not at the entrance but in the region a little downward from the entrance in the tube.The steam absorption convective heat transfer coefficient between the liquid film flowing down and the inside wall of the temperature and the film temperature at the maximum temperature location and the bottom.The film heat and mass transfer coefficients rose with increasing Reynolds number of the liquid film stream.The coefficients showed opposite trend to the empirical correlation reported for laminar film flow on a straight smooth tube in a refrigeration mode in the past work.The fact can be caused due to a turbulent promotion effect of the liquid in a spiral tube.展开更多
Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angl...Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angle reached 12n. As the varying radius of curvature became a dominant flow parameter, three-dimensional flow analysis was performed to this flow together with different Reynolds numbers while constant wall heat flux condition was set in thermal field. From the analysis, centrifugal force due to curvature effect is found to have significant role in behavior of pressure drop and heat transfer. The centrifugal force enhances pressure drop and heat transfer to have generally higher values in the spiral coiled tube than those in the straight tube. Even then, friction factor and Nusselt number are found to follow the proportionality with square root of the Dean number. Individual effect of flow parameters of Reynolds number and curvature ratio was investigated and effect of Reynolds number is found to be stronger than that of curvature effect.展开更多
An experimental study on heat transfer and resistance coefficients of linearly arranged smooth and spirally corrugated tube bundles in cross-flow was performed. The heat transfer and resistance coefficients are presen...An experimental study on heat transfer and resistance coefficients of linearly arranged smooth and spirally corrugated tube bundles in cross-flow was performed. The heat transfer and resistance coefficients are presented in this paper with transverse and longitudinal tube-pitch and tube geometries taken into account. The experiment's results can provide technical guidelines for application to horizontal air preheater with arranged in-line spirally corrugated tube bundles, especially to the air preheater for CFBCBs (Circulating Fluidized Bed Combustion Boilers).展开更多
In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By vari...In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By variable transformation, the original 3-D problem is converted into a 2-D problem in spiral coordinates. The algorithm of SIMPLEC is used to study the fully developed fluid flow and heat transfer in the spiral finned tube at constant periphery temperature and constant axial heat flux. The computed results agree pretty well with the experimental data obtained from the industry. Further studies on the fluid flows and temperature profiles at different Reynolds numbers within straight and spiral finned tubes are conducted and the mechanisms involved are explored. It is found that with the spiral finned tube, pressure drop increases to a great extent whereas heat transfer tends to be decreased.展开更多
基金support by the Scientific Research Start-up Funds for introducing Talent in the Sichuan University (20822041C4014)National Science and Technology Major Project of China (2017-I-0004-0004)。
文摘The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Reynolds numbers(Re) and structural parameters pitch(s) and spiral diameter(D) are analyzed.Results indicate that the average Nusselt numberNu and friction factorNu increase with an increase in Re, and decrease with an increase in D/d(tube diameter). In terms of the structural parameter s/d, it is found that as s/d increases, the Nu first increase, and then decrease. and the critical structural parameter is s/d = 4. Compared with the straight tube, the SMST can improve Nu by 34.8% at best, while it can improve Nu by 102.1% at most. In addition, a comprehensive heat transfer coefficient is applied to analyze the thermodynamic properties of SMST. With the optimal structural parameters of D/d = 6 and s/d = 4, the comprehensive heat transfer factor of supercritical pressure hydrocarbon fuel in the SMST can reach 1.074. At last, correlations of the average Nusselt number and friction factor are developed to predict the flow and heat transfer of n-decane at supercritical pressure.
基金supported by National Basic Research Program of China(973 Program,Grant No. 2007CB206900)Scholarship Award for Doctoral by Ministry of Education of China(Grant No. 10000071183646)
文摘Conical spiral tube bundle are universally used in heat transfer enhancement in heat exchangers.The heat transfer and resistance of the tube bundle are affected greatly by the conical structure,so the analysis of it is necessary.In order to a further evaluation,the heat transfer and resistance characteristics of conical spiral tube bundle are investigated with regression analysis based on numerical simulation data.The correlations of heat transfer and pressure drop of conical spiral tube bundle are proposed both in laminar and turbulent fluid flow.On the based of the field synergy principle,the synergy of four vectors,the velocity,the velocity gradient,the temperature gradient and the pressure gradient,are calculated and discussed via the user defined function(UDF) program.The synergy angles β and θ,which respectively denote the performance of heat transfer enhancement and pressure drop of the conical spiral tube bundle,are analyzed.Finally,the comprehensive performance of the conical spiral tube is evaluated by the synergy angle γ and all of the three synergy angles of conical spiral tube bundle are compared to both bare tube and thin cylinder-interpolated tube.The analysis of the synergy angles shows that the heat transfer enhancement and pressure drop of conical spiral tube bundle are smaller than that of the thin cylinder-interpolated tube,while the comprehensive performance of conical spiral tube bundle is greater.The analysis of the heat transfer and pressure drop of conical spiral tube is valuable and instructional on the design and optimum of conical spiral tube bundle heat exchangers.
文摘Being aimed at the inside wall wrinkling and sinking phenomenon of palladium-yttrium alloy thin wall spiral tube used for preparation of high purity hydrogen, extraction of hydrogen isotope, and purification and separation of hydrogen in the winding process, this article analyzed the reasons for above phenomena, established a numerical simulation model of winding process of above tube, using elastic-plastic Finite Element method analyzed the max. tensile stress and max. compression stress and their locations, thereby provides a theory base for the control of working forming course of thin wall spiral tube.
基金supported by the National Natural Science Foundation of China(Grant No.52376072)。
文摘Spiral tube heat exchangers have been widely used in phase change energy storage due to the compact structure and large heat transfer area.Therefore,this study numerically analyzes the effects of spiral tube diameter,number of rotations,and unsteady heat source on the melting process in conical spiral tube energy storage tanks using Fluent software.The results indicate that when the tube diameter is increased from 8 to 11 mm and the number of rotations is increased from 5 to 8,the melting time is extended by 15.74%and 17.83%,respectively.The energy storage capacity increases by 0.64%and 1.83%,respectively.The average energy storage rate decreases by 13.05%and 13.58%,respectively.Furthermore,the sinusoidal wave heat source with small heat source periods has little effect on the melting process,while large heat source periods can significantly accelerate the melting.And the influence of amplitudes on the thermal storage performance under large heat source periods is more obvious.When the heat source period is increased from 2 to 160 min and the amplitude is increased from 5 to 20 K,the melting time is reduced by 24.50%and 17.20%,respectively.The total energy storage capacity decreases by 6.36%and increases by 1.62%,respectively.The average energy storage rate increases by 24.03%and 22.74%,respectively.The study provides guidance for the performance optimization of spiral tube phase change systems.
基金supported by the National Natural Science Foundation of China (Grant No. 51876147)。
文摘Latent heat thermal energy storage systems can effectively fill the gap between energy storage and application, and phase-change materials(PCMs) are crucial media for storing thermal energy. Therefore, how to maximize the utilization efficiency of PCMs has attracted widespread attention. In this study, the thermal behavior of two thermal storage units employing a spiral tube and straight tube as heat transfer tubes was experimentally researched and comprehensively compared. Stefan numbers were used to investigate the impact of the heat transfer fluid temperature on the PCM melting process. The temperature distribution of PCMs,temporal evolution of the melting front, and temperature variations of measurement points in both tanks were compared. The average temperature and energy storage of PCMs were calculated to evaluate the thermal performance of different configurations. The results indicate that compared to cylinder B(with a straight tube), the energy storage in cylinder A(with a spiral tube)increased by 78.8%, 38.5%, and 19.6% at Stefan numbers of 1.08, 1.28, and 1.48, respectively. Moreover, the increase in the Stefan number simultaneously ascended the average temperature and energy storage of PCMs in containers A and B, causing the shortening of the melting time. When the Stefan number was increased from 1.28 to 1.48, the storage capacity was raised from3233.18 to 3463.8 k J, and the total melting time was decreased by 34.2% from 547.5 to 360 min after the PCM was loaded in cylinder A. The research results lay a certain foundation for a deeper study of enhanced heat transfer in spiral tubes.
基金supported by the National Basic Research Program of China (973 Program,Grant No.2007CB206900)
文摘Heat transfer enhancement is achieved by flow-induced vibration in elastic tube bundles heat exchangers. For a further understanding of heat transfer enhancement mechanism and tube structure optimization, it is of importance to study the vibration characteristics of fluid-structure interaction of tube bundles. The finite element method is applied in the study of fluid-structure interaction of a new type elastic heat transfer element, i.e., the dimensional conical spiral tube bundle. The vibration equation and element matrix for the tube are set up by the regulation of different helical angles and coordinate transformation, together with the simplification of the joint body of the two pipes. The vibration characteristics of conical spiral tube bundle are analyzed at different velocities of the tube-side flow, and the critical velocity of vibration buckling is obtained. The results show that the natural frequency of the tube bundle decreases as the flow speed increases, especially for the first order frequency, and the critical velocity of vibration buckling is between 1.2665 m/s-1.2669 m/s. The vibration mode of conical spiral tube bundle is mainly z-axial, which is feasible to be induced and controlled.
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2012M521768)the National Basic Research Program of China(973 Program,Grant No.2011CB706606)
文摘Conical spiral tube bundles are widely used in enhancing the heat transfer via the flow-induced vibration in heat exchangers. The shell side flow-induced vibration of the conical spiral tube bundle is experimentally investigated in this paper. The experi- ment table was built and the operational modes, the vibration parameters of the tube bundle were analyzed. The results show that, the operational mode frequencies of the conical spiral tube are decreased as the shell-side fluid flow velocity increases, especially for the first order frequency. Within the parameter range of this experiment, the real working frequency of the conical spiral tube is between the 1 st and the 2nd operational modes, and the free end vibration amplitude of the tube bundle increases greatly when the shell side fluid flow velocity exceeds a critical value.
基金Supported by National Natural Science Foundation of China(Grant Nos.51075201,51205193,51375227)
文摘The current research of the valveless piezoelectric pump focuses on increasing the flow rate and pressure differential. Compared with the valve piezoelectric pump, the valveless one has excellent performances in simple structure, low cost, and easy miniaturization. So, their important development trend is the mitigation of their weakness, and the multi-function integration. The flow in a spiral tube element is sensitive to the element attitude caused by the Coriolis force, and that a valveless piezoelectric pump is designed by applying this phenomenon. The pump has gyroscopic effect, and has both the actuator function of fluid transfer and the sensor function, which can obtain the angular velocity when its attitude changes. First, the present paper analyzes the flow characteristics in the tube, obtains the calculation formula for the pump flow, and identifies the relationship between pump attitude and flow, which clarifies the impact of flow and driving voltage, frequency, spiral line type and element attitude, and verifies the gyroscopic effect of the pump. Then, the finite element simulation is used to verify the theory. Finally, a pump is fabricated for experimental testing of the relationship between pump attitude and pressure differential. Experimental results show that when Archimedes spiral θ=4π is selected for the tube design, and the rotation speed of the plate is 70 r/min, the pressure differential is 88.2 Pa, which is 1.5 times that of 0 r/min rotation speed. The spiral-tube-type valveless piezoelectric pump proposed can turn the element attitude into a form of pressure output, which is important for the multi-function integration of the valveless piezoelectric pump and for the development of civil gyroscope in the future.
基金Project supported by the National Basic Research Program of China (973 Program,Grant Nos. 2007CB206900)supported by the Independent Innovation program of Shandong University (Grant No. 31360070613218)
文摘The conical spiral tube bundle is a new type of heat transfer elements used to enhance heat transfer through flow-induced vibration. The effect of the external fluid flow on the transverse vibration of the conical spiral tube bundle is investigated with a mathematical method proposed in this article. Firstly, the natural vibration of the tube bundle is obtained by the hammering excitation method and the mode shapes of the transverse vibration are discussed. Then the effect of the external fluid flow on the transverse vibration of tube bundle is analyzed by a combination of experimental data, empirical correlations and FEM. The results show that in the frequency range from 0 Hz to 50 Hz, there exist six transverse vibrations. The external fluid flow has a significant effect on the frequency of the tube's transverse vibration, which are decreased by about 18% to 24% when the external fluid flow speed is 0.3 m/s.
基金The authorsacknowledge financial support by the Research and Development Program for Innovative Energy Efficiency Technology under the New Energy and Industrial Technology Development Organization(NEDO)project(Grant no.11501835-O).
文摘Heat and mass transfer of a LiBr/water absorption heat pump system(AHP)was experimentally studied during working a heating-up mode.The examination was performed for a single spiral tube,which was simulated for heat transfer tubes in an absorber.The inside and outside of the tube were subjected to a film flow of the absorption liquid and exposed to the atmosphere,respectively.The maximum temperature of the absorption liquid was observed not at the entrance but in the region a little downward from the entrance in the tube.The steam absorption convective heat transfer coefficient between the liquid film flowing down and the inside wall of the temperature and the film temperature at the maximum temperature location and the bottom.The film heat and mass transfer coefficients rose with increasing Reynolds number of the liquid film stream.The coefficients showed opposite trend to the empirical correlation reported for laminar film flow on a straight smooth tube in a refrigeration mode in the past work.The fact can be caused due to a turbulent promotion effect of the liquid in a spiral tube.
基金supported by the Second Stage of Brain Korea 21 Projects,Korea
文摘Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angle reached 12n. As the varying radius of curvature became a dominant flow parameter, three-dimensional flow analysis was performed to this flow together with different Reynolds numbers while constant wall heat flux condition was set in thermal field. From the analysis, centrifugal force due to curvature effect is found to have significant role in behavior of pressure drop and heat transfer. The centrifugal force enhances pressure drop and heat transfer to have generally higher values in the spiral coiled tube than those in the straight tube. Even then, friction factor and Nusselt number are found to follow the proportionality with square root of the Dean number. Individual effect of flow parameters of Reynolds number and curvature ratio was investigated and effect of Reynolds number is found to be stronger than that of curvature effect.
文摘An experimental study on heat transfer and resistance coefficients of linearly arranged smooth and spirally corrugated tube bundles in cross-flow was performed. The heat transfer and resistance coefficients are presented in this paper with transverse and longitudinal tube-pitch and tube geometries taken into account. The experiment's results can provide technical guidelines for application to horizontal air preheater with arranged in-line spirally corrugated tube bundles, especially to the air preheater for CFBCBs (Circulating Fluidized Bed Combustion Boilers).
文摘In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By variable transformation, the original 3-D problem is converted into a 2-D problem in spiral coordinates. The algorithm of SIMPLEC is used to study the fully developed fluid flow and heat transfer in the spiral finned tube at constant periphery temperature and constant axial heat flux. The computed results agree pretty well with the experimental data obtained from the industry. Further studies on the fluid flows and temperature profiles at different Reynolds numbers within straight and spiral finned tubes are conducted and the mechanisms involved are explored. It is found that with the spiral finned tube, pressure drop increases to a great extent whereas heat transfer tends to be decreased.