Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harm...Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harmonic excitation.Within any integration segment, as long as its length is small enough,along the circumferential curvilinear coordinate,the non- homogeneous matrix differential equation of an elastic ring of complex geometrical shape can be rewritten in terms of the homogeneous one by the method of extended homogeneous capacity proposed in this paper.For the exterior fluid domain,the multi-circular virtual source simulation technique is adopted.The source density distributed on each virtual circular curve may be ex- panded as the Fourier's series.Combining with the inverse fast Fourier transformation,a higher accuracy and efficiency method for solving 2-D exterior Helmholtz's problems is presented in this paper.In the aspect of solution to the coupling equations,the state vectors of elastic ring induced by the given harmonic excitation and generalized forces of coefficients of the Fourier series can be obtained respectively by using a high precision integration scheme combined with the method of extended homogeneous capacity put forward in this paper.According to the superposition princi- ple and compatibility conditions at the interface between the elastic ring and fluid,the algebraic equation of system can be directly constructed by using the least square approximation.Examples of acoustic radiation from two typical fluid-loaded elastic rings under a harmonic concentrated force are presented.Numerical results show that the method proposed is more efficient than the mixed FE-BE method in common use.展开更多
Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the inte...Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the internal forces of tunnel linings with multiple cracks.The semi-analytical solution is obtained using structural analysis considering the flexural rigidity for the cracked longitudinal section of the tunnel lining.Then the proposed solution is verified numerically.Using the proposed method,the influences of the crack depth and the number of cracks on the bending moment and modified crack tip stress are investigated.With the increase in crack depth,the bending moment of lining scetion adjacent to the crack decreases,while the bending moment of lining scetion far away from the crack increases slightly.The more the number of cracks in a tunnel lining,the easier the new cracks initiated.展开更多
Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation...Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation efectiveness and precision, is presented for solving the acoustic radiation from a submerged infnite non-circular cylindrical shell stifened by longitudinal ribs by means of the Fourier integral transformation and stationary phase method. In this work, besides the normal interacting force, which is commonly adopted by some researchers, the other interacting forces and moments between the longitudinal ribs and the non-circular cylindrical shell are considered at the same time. The efects of the number and the size of the cross-section of longitudinal ribs on the characteristics of acoustic radiation are investigated. Numerical results show that the method proposed is more efcient than the existing mixed FE-BE method.展开更多
The effect of axial shallow groove on the nonlinear dynamic response and buckling of laminated cylindrical shells subjected to radial compression loading was investigated. Based on the first-order shear deformation th...The effect of axial shallow groove on the nonlinear dynamic response and buckling of laminated cylindrical shells subjected to radial compression loading was investigated. Based on the first-order shear deformation theory (FSDT), the nonlinear dynamic equations involving the transverse shear deformation and initial geometric imperfections were derived with the Hamilton philosophy. The axial shallow groove of the laminated composite cylindrical shell was treated as the initial geometric imperfections in the dynamic equations. A semi-analytical method of expanding displacements and loads along the circumferential direction and employing the finite difference method along the axial direction and in the time domain is used to solve the governing equations and obtain the dynamic response of the laminated shell. The B-R criterion was employed to determine the critical loads of dynamic buckling of the shell. The effects of the parameters of the shallow groove on the dynamic response and buckling were discussed in this paper and the results show that the axial shallow grooves greatly affect the dynamic response and buckling.展开更多
A semi-analytical and semi-numerical method is proposed for the dynamic analysis of foundations. The Lamb's solution and the approximate formulae were used to establish the relation of the contact force and deflectio...A semi-analytical and semi-numerical method is proposed for the dynamic analysis of foundations. The Lamb's solution and the approximate formulae were used to establish the relation of the contact force and deflection between the foundation and soil. Therefore, the foundation can be separated from soil and analyzed by FEM as for the static cases. The plate can be treated as that the known forces are acting on the upper surface, and the contact pressure from soil can be represented as the deflection. So that only the plate needs to be divided into elements in the analysis. By this method, a series of vibration problems, including various shapes and rigidities of foundations, different excitation frequencies, were analyzed. Furthermore, it can be used for the embedded foundation. The numerical examples show that this method has simplicity, highly accurate and versatile. It is an effective method for the dynamic analysis of foundations.展开更多
Motion responses of two ships advancing parallel in waves with hydrodynamic interactions are investigated in this paper. Within the framework of the frequency-domain potential flow theory, a semi-analytical higher-ord...Motion responses of two ships advancing parallel in waves with hydrodynamic interactions are investigated in this paper. Within the framework of the frequency-domain potential flow theory, a semi-analytical higher-order translating-pulsating source(HOTP) method is presented to solve the problems of coupled radiation and diffraction potential. The method employs nine-node bi-quadratic curvilinear elements to discretize the boundary integral equations(BIEs) constructed over the mean wetted surface of the two ship hulls. In order to eliminate the numerical oscillation, analytical quadrature formulas are derived and adopted to evaluate the integrals related to the Froudedependent part of the Green’s function along the horizontal direction in the BIEs. Based on the method, a numerical program is originally coded. Through the calculations of hydrodynamic responses of single ships, the numerical implementation is proved successful. Then the validated program is applied in the investigations on the hydrodynamic interactions of two identical Wigley Ⅲ hulls and the underway replenishment of a frigate and a supply ship in waves with and without stagger, respectively. The comparison between the present computed results with experimental data and numerical solutions of other methods shows that the semi-analytical HOTP method is of higher accuracy than the pulsating source Green’s function method with speed correction and better stability than the traditional HOTP method based on Gauss quadrature. In addition, for two ships with obviously different dimensions,the influence of hydrodynamic interactions on the smaller ship is found to be more noticeable than that on the larger ship, which leads to the differences between the motions of frigate with and without the presence of supply ship.展开更多
Based on the Hamiltonian governing equations of plane elasticity for sectorial domain, the variable separation and eigenfunction expansion techniques were employed to develop a novel analytical finite element for the ...Based on the Hamiltonian governing equations of plane elasticity for sectorial domain, the variable separation and eigenfunction expansion techniques were employed to develop a novel analytical finite element for the fictitious crack model in fracture mechanics of concrete. The new analytical element can be implemented into FEM program systems to solve fictitious crack propagation problems for concrete cracked plates with arbitrary shapes and loads. Numerical results indicate that the method is more efficient and accurate than ordinary finite element method.展开更多
Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination o...Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling.展开更多
In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant...In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant. Polygonal elements can do well in simulation of the materials behavior and provide greater flexibility for the meshing of complex geometries. Hence, the study on the polygonal element is a very useful and necessary part in the finite element method. In this paper, an n-sided polygonal element based on quadratic spline interpolant, denoted by PS2 element, is presented using the triangular area coordinates and the B-net method. The PS2 element is conforming and can exactly model the quadratic field. It is valid for both convex and non-convex polygonal element, and insensitive to mesh distortions. In addition, no mapping or coordinate transformation is required and thus no Jacobian matrix and its inverse are evaluated. Some appropriate examples are employed to evaluate the performance of the proposed element.展开更多
Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions...Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the trian- gular area coordinates and the B-net method, which can ex- actly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The nu- merical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.展开更多
In this paper, the bicubic splines in product form are used to construct the multi-field functions for bending moments, twisting moment and transverse displacement of the plate on elastic foundation. The multivariable...In this paper, the bicubic splines in product form are used to construct the multi-field functions for bending moments, twisting moment and transverse displacement of the plate on elastic foundation. The multivariable spline element equations are derived, based on the mixed variational principle. The analysis and calculations of bending, vibration and stability of the plates on elastic foundation are presented in the paper. Because the field functions of plate on elastic foundation are assumed independently, the precision of the field variables of bending moments and displacement is high.展开更多
Semi-analytical elasticity solutions for bending of angle-ply laminates in cylindrical bending are presented using the state-space-based differential quadrature method (SSDQM). Partial differential state equation is d...Semi-analytical elasticity solutions for bending of angle-ply laminates in cylindrical bending are presented using the state-space-based differential quadrature method (SSDQM). Partial differential state equation is derived from the basic equations of elasticity based on the state space concept. Then, the differential quadrature (DQ) technique is introduced to discretize the longitu- dinal domain of the plate so that a series of ordinary differential state equations are obtained at the discrete points. Meanwhile, the edge constrained conditions are handled directly using the stress and displacement components without the Saint-Venant principle. The thickness domain is solved analytically based on the state space formalism along with the continuity conditions at interfaces. The present method is validated by comparing the results to the exact solutions of Pagano’s problem. Numerical results for fully clamped thick laminates are presented, and the influences of ply angle on stress distributions are discussed.展开更多
The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh disto...The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previous work, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B- net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian co- ordinates. In this paper, a thin plate spline element is devel- oped based on the spline element L8 and the refined tech- nique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.展开更多
The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which...The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which can be solved by traditional numerical methods and an infinite domain with a crack which can be solved by Muskhelishvili’s solutions.However,this alternating method cannot be directly applied to the edge crack problems since partial crack surface of Muskhelishvili’s solutions is located outside the computational domain.In this paper,an improved alternating method,the spline fictitious boundary element alternating method(SFBEAM),based on infinite domain with the combination of spline fictitious boundary element method(SFBEM)and Muskhelishvili’s solutions is proposed to solve the edge crack problems.Since the SFBEM and Muskhelishvili’s solutions are obtained in the framework of infinite domain,no special treatment is needed for solving the problem of edge cracks.Different mixed boundary conditions edge crack problems with varies of computational parameters are given to certify the high precision,efficiency and applicability of the proposed method compared with other alternating methods and extend finite element method.展开更多
A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consis...A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.展开更多
SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 co...SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 code named STELLA is developed and verified at SNERDI (Shanghai Nuclear Engineering Research and Design Institute). For SP3 method, neutron transport equation can be transformed into two coupled equations in the same mathematical form as diffusion equation. In this work, SANM (semi-analytic nodal method) is used to solve diffusion-like equation, due to its easy to handle multi-group problem. Whole core nodal boundary net current coupling is used to improve convergence stability in SANM, instead of solving two-node problem. CMFD (coarse-mesh finite difference) acceleration method is employed for 0-th SP3 equation, which represents the neutron balance relationship. Three benchmarks are used to verify the SP3 code, STELLA. The first one is a self-defined one dimensional problem, which demonstrates SP3 method is extremely accurate, due to no academic approximation in one dimensional for SP3. The second one is a two dimensional one-group problem cited from Larsen's paper, which is usually used to verify and prove the SP3 code correct and accurate. And the third one is modified from 2D C5G7-MOX benchmark, whose numerical results indicate that STELLA is accurate and efficient in pin size level, compared to diffusion model.展开更多
Application of spline element and state space method for analysis of dynamic response of elastic rectangular plates is presented. The spline element method is used for space domain and the state space method in contro...Application of spline element and state space method for analysis of dynamic response of elastic rectangular plates is presented. The spline element method is used for space domain and the state space method in control theory of system is used for time domain. A state variable recursive scheme is developed, then the dynamic response of structure can he calculated directly. Several numerical examples are given. The results which are presented to demonstrate the accuracy and efficiency of the present method are quite satisfactory.展开更多
This paper relates to the deep research on the Splinc Model Method of KED analysis. With the use of cubic B-splinc function as a link’s transverse deflection interpolation function, the principle of virtual displacem...This paper relates to the deep research on the Splinc Model Method of KED analysis. With the use of cubic B-splinc function as a link’s transverse deflection interpolation function, the principle of virtual displacement is presented as a basic theory for the general formulation of the equations of motion, and thus abandoned the kinematic assumption and the instantaneous structure assumption which arc used in the Spline Model Method. In thc same time, the nonlinear terms sue as coupling terms between thc rigid body motion and elastic deformation arc included. New member’s spline models are established. Mass matrix, Coriolis mass matrix, normal and tangential mass matrix, linear stiffness matrix, nonlinear stiffness matrix and rotation matrix arc derived. The kinematic differential equations of a member and system are deduced in the end. The Newmark direct integration method is used as the solution scheme of the kinematic differential equations to get the periodic response.展开更多
Non-singular fictitious boundary integral equations for orthotropic elastic plane problems were deduced according to boundary conditions by the techniques of singular-points-outside-domain. Then the unknown fictitious...Non-singular fictitious boundary integral equations for orthotropic elastic plane problems were deduced according to boundary conditions by the techniques of singular-points-outside-domain. Then the unknown fictitious load functions along the fictitious boundary were expressed in terms of basic spline functions, and the boundary-segment-least-squares method was proposed to eliminate the boundary residues obtained. By the above steps, numerical solutions to the integral equations can be achieved. Numerical examples are given to show the accuracy and efficiency of the proposed method.展开更多
In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these t...In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these two plate-models for the simply-supported rectangular orthotropic plates. The well-known fundamental solutions of the isotrqpic plates are utlized for the spline integral equation analysis of anisotropic plates.Even with sparse meshes the satisfactory results can be obtained. The analysis of plates on two-parameter elastic foundation is so simple as the common case that only a few terms should be added to the formulas of fictitious loads.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10172038)
文摘Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harmonic excitation.Within any integration segment, as long as its length is small enough,along the circumferential curvilinear coordinate,the non- homogeneous matrix differential equation of an elastic ring of complex geometrical shape can be rewritten in terms of the homogeneous one by the method of extended homogeneous capacity proposed in this paper.For the exterior fluid domain,the multi-circular virtual source simulation technique is adopted.The source density distributed on each virtual circular curve may be ex- panded as the Fourier's series.Combining with the inverse fast Fourier transformation,a higher accuracy and efficiency method for solving 2-D exterior Helmholtz's problems is presented in this paper.In the aspect of solution to the coupling equations,the state vectors of elastic ring induced by the given harmonic excitation and generalized forces of coefficients of the Fourier series can be obtained respectively by using a high precision integration scheme combined with the method of extended homogeneous capacity put forward in this paper.According to the superposition princi- ple and compatibility conditions at the interface between the elastic ring and fluid,the algebraic equation of system can be directly constructed by using the least square approximation.Examples of acoustic radiation from two typical fluid-loaded elastic rings under a harmonic concentrated force are presented.Numerical results show that the method proposed is more efficient than the mixed FE-BE method in common use.
基金The authors gratefully acknowledge the financial support by the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of China(Grant No.U1934210)the Natural Science Foundation of Beijing,China(Grant No.8202037).
文摘Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the internal forces of tunnel linings with multiple cracks.The semi-analytical solution is obtained using structural analysis considering the flexural rigidity for the cracked longitudinal section of the tunnel lining.Then the proposed solution is verified numerically.Using the proposed method,the influences of the crack depth and the number of cracks on the bending moment and modified crack tip stress are investigated.With the increase in crack depth,the bending moment of lining scetion adjacent to the crack decreases,while the bending moment of lining scetion far away from the crack increases slightly.The more the number of cracks in a tunnel lining,the easier the new cracks initiated.
基金Project supported by the National Natural Science Foundation of China(No.10172038),the Doctoral Foundation ofthe National Education Ministry(No.20040487013)and the Natural Science Foundation of Guangxi(No.0339019).
文摘Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation efectiveness and precision, is presented for solving the acoustic radiation from a submerged infnite non-circular cylindrical shell stifened by longitudinal ribs by means of the Fourier integral transformation and stationary phase method. In this work, besides the normal interacting force, which is commonly adopted by some researchers, the other interacting forces and moments between the longitudinal ribs and the non-circular cylindrical shell are considered at the same time. The efects of the number and the size of the cross-section of longitudinal ribs on the characteristics of acoustic radiation are investigated. Numerical results show that the method proposed is more efcient than the existing mixed FE-BE method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10202013)
文摘The effect of axial shallow groove on the nonlinear dynamic response and buckling of laminated cylindrical shells subjected to radial compression loading was investigated. Based on the first-order shear deformation theory (FSDT), the nonlinear dynamic equations involving the transverse shear deformation and initial geometric imperfections were derived with the Hamilton philosophy. The axial shallow groove of the laminated composite cylindrical shell was treated as the initial geometric imperfections in the dynamic equations. A semi-analytical method of expanding displacements and loads along the circumferential direction and employing the finite difference method along the axial direction and in the time domain is used to solve the governing equations and obtain the dynamic response of the laminated shell. The B-R criterion was employed to determine the critical loads of dynamic buckling of the shell. The effects of the parameters of the shallow groove on the dynamic response and buckling were discussed in this paper and the results show that the axial shallow grooves greatly affect the dynamic response and buckling.
文摘A semi-analytical and semi-numerical method is proposed for the dynamic analysis of foundations. The Lamb's solution and the approximate formulae were used to establish the relation of the contact force and deflection between the foundation and soil. Therefore, the foundation can be separated from soil and analyzed by FEM as for the static cases. The plate can be treated as that the known forces are acting on the upper surface, and the contact pressure from soil can be represented as the deflection. So that only the plate needs to be divided into elements in the analysis. By this method, a series of vibration problems, including various shapes and rigidities of foundations, different excitation frequencies, were analyzed. Furthermore, it can be used for the embedded foundation. The numerical examples show that this method has simplicity, highly accurate and versatile. It is an effective method for the dynamic analysis of foundations.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.52101357)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.21KJB580012)the Scientific Research Start-up Fund of Jiangsu University of Science and Technology.
文摘Motion responses of two ships advancing parallel in waves with hydrodynamic interactions are investigated in this paper. Within the framework of the frequency-domain potential flow theory, a semi-analytical higher-order translating-pulsating source(HOTP) method is presented to solve the problems of coupled radiation and diffraction potential. The method employs nine-node bi-quadratic curvilinear elements to discretize the boundary integral equations(BIEs) constructed over the mean wetted surface of the two ship hulls. In order to eliminate the numerical oscillation, analytical quadrature formulas are derived and adopted to evaluate the integrals related to the Froudedependent part of the Green’s function along the horizontal direction in the BIEs. Based on the method, a numerical program is originally coded. Through the calculations of hydrodynamic responses of single ships, the numerical implementation is proved successful. Then the validated program is applied in the investigations on the hydrodynamic interactions of two identical Wigley Ⅲ hulls and the underway replenishment of a frigate and a supply ship in waves with and without stagger, respectively. The comparison between the present computed results with experimental data and numerical solutions of other methods shows that the semi-analytical HOTP method is of higher accuracy than the pulsating source Green’s function method with speed correction and better stability than the traditional HOTP method based on Gauss quadrature. In addition, for two ships with obviously different dimensions,the influence of hydrodynamic interactions on the smaller ship is found to be more noticeable than that on the larger ship, which leads to the differences between the motions of frigate with and without the presence of supply ship.
文摘Based on the Hamiltonian governing equations of plane elasticity for sectorial domain, the variable separation and eigenfunction expansion techniques were employed to develop a novel analytical finite element for the fictitious crack model in fracture mechanics of concrete. The new analytical element can be implemented into FEM program systems to solve fictitious crack propagation problems for concrete cracked plates with arbitrary shapes and loads. Numerical results indicate that the method is more efficient and accurate than ordinary finite element method.
基金supported by National Natural Science Foundation of China (Grant No. 50675145)Shanxi Provincial Key Project of Science and Technology of China (Grant No. 2006031147)+1 种基金Shanxi Provincial Innovation Project for Graduate Students of China (Grant No. 20061027)Shanxi Provincial Key Project for Studied-abroad Returnee of China
文摘Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling.
基金supported by the National Natural Science Foundation of China (60533060, 10672032, 10726067)Science Foundation of Dalian University of Technology (SFDUT07001)
文摘In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant. Polygonal elements can do well in simulation of the materials behavior and provide greater flexibility for the meshing of complex geometries. Hence, the study on the polygonal element is a very useful and necessary part in the finite element method. In this paper, an n-sided polygonal element based on quadratic spline interpolant, denoted by PS2 element, is presented using the triangular area coordinates and the B-net method. The PS2 element is conforming and can exactly model the quadratic field. It is valid for both convex and non-convex polygonal element, and insensitive to mesh distortions. In addition, no mapping or coordinate transformation is required and thus no Jacobian matrix and its inverse are evaluated. Some appropriate examples are employed to evaluate the performance of the proposed element.
基金supported by the National Natural Science Foundation of China(11001037,11102037 and 11290143)the Fundamental Research Funds for the Central Universities
文摘Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the trian- gular area coordinates and the B-net method, which can ex- actly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The nu- merical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.
文摘In this paper, the bicubic splines in product form are used to construct the multi-field functions for bending moments, twisting moment and transverse displacement of the plate on elastic foundation. The multivariable spline element equations are derived, based on the mixed variational principle. The analysis and calculations of bending, vibration and stability of the plates on elastic foundation are presented in the paper. Because the field functions of plate on elastic foundation are assumed independently, the precision of the field variables of bending moments and displacement is high.
基金Project supported by the National Natural Science Foundation of China (No. 10432030)the China Postdoctoral Science Foundation (No. 20060401071)the Program for New Century Excellent Talent in University of China (No. NCET-05-0510)
文摘Semi-analytical elasticity solutions for bending of angle-ply laminates in cylindrical bending are presented using the state-space-based differential quadrature method (SSDQM). Partial differential state equation is derived from the basic equations of elasticity based on the state space concept. Then, the differential quadrature (DQ) technique is introduced to discretize the longitu- dinal domain of the plate so that a series of ordinary differential state equations are obtained at the discrete points. Meanwhile, the edge constrained conditions are handled directly using the stress and displacement components without the Saint-Venant principle. The thickness domain is solved analytically based on the state space formalism along with the continuity conditions at interfaces. The present method is validated by comparing the results to the exact solutions of Pagano’s problem. Numerical results for fully clamped thick laminates are presented, and the influences of ply angle on stress distributions are discussed.
基金supported by the National Natural Science Foundation of China(11001037,11102037,11290143)the Fundamental Research Funds for the Central Universities(DUT13LK07)
文摘The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previous work, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B- net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian co- ordinates. In this paper, a thin plate spline element is devel- oped based on the spline element L8 and the refined tech- nique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.
基金supported by the National Natural Science Foundation of China(51078150)the National Natural Science Foundation of China(11602087)+1 种基金the State Key Laboratory of Subtropical Building Science,South China University of Technology(2017ZB32)National Undergraduate Innovative and Entrepreneurial Training Program(201810561180).
文摘The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which can be solved by traditional numerical methods and an infinite domain with a crack which can be solved by Muskhelishvili’s solutions.However,this alternating method cannot be directly applied to the edge crack problems since partial crack surface of Muskhelishvili’s solutions is located outside the computational domain.In this paper,an improved alternating method,the spline fictitious boundary element alternating method(SFBEAM),based on infinite domain with the combination of spline fictitious boundary element method(SFBEM)and Muskhelishvili’s solutions is proposed to solve the edge crack problems.Since the SFBEM and Muskhelishvili’s solutions are obtained in the framework of infinite domain,no special treatment is needed for solving the problem of edge cracks.Different mixed boundary conditions edge crack problems with varies of computational parameters are given to certify the high precision,efficiency and applicability of the proposed method compared with other alternating methods and extend finite element method.
基金supported by the Fund of National Engineering and Research Center for Highways in Mountain Area(No.gsgzj-2012-05)the Fundamental Research Funds for the Central Universities of China(No.CDJXS12240003)the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-MS201213)
文摘A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.
文摘SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 code named STELLA is developed and verified at SNERDI (Shanghai Nuclear Engineering Research and Design Institute). For SP3 method, neutron transport equation can be transformed into two coupled equations in the same mathematical form as diffusion equation. In this work, SANM (semi-analytic nodal method) is used to solve diffusion-like equation, due to its easy to handle multi-group problem. Whole core nodal boundary net current coupling is used to improve convergence stability in SANM, instead of solving two-node problem. CMFD (coarse-mesh finite difference) acceleration method is employed for 0-th SP3 equation, which represents the neutron balance relationship. Three benchmarks are used to verify the SP3 code, STELLA. The first one is a self-defined one dimensional problem, which demonstrates SP3 method is extremely accurate, due to no academic approximation in one dimensional for SP3. The second one is a two dimensional one-group problem cited from Larsen's paper, which is usually used to verify and prove the SP3 code correct and accurate. And the third one is modified from 2D C5G7-MOX benchmark, whose numerical results indicate that STELLA is accurate and efficient in pin size level, compared to diffusion model.
文摘Application of spline element and state space method for analysis of dynamic response of elastic rectangular plates is presented. The spline element method is used for space domain and the state space method in control theory of system is used for time domain. A state variable recursive scheme is developed, then the dynamic response of structure can he calculated directly. Several numerical examples are given. The results which are presented to demonstrate the accuracy and efficiency of the present method are quite satisfactory.
文摘This paper relates to the deep research on the Splinc Model Method of KED analysis. With the use of cubic B-splinc function as a link’s transverse deflection interpolation function, the principle of virtual displacement is presented as a basic theory for the general formulation of the equations of motion, and thus abandoned the kinematic assumption and the instantaneous structure assumption which arc used in the Spline Model Method. In thc same time, the nonlinear terms sue as coupling terms between thc rigid body motion and elastic deformation arc included. New member’s spline models are established. Mass matrix, Coriolis mass matrix, normal and tangential mass matrix, linear stiffness matrix, nonlinear stiffness matrix and rotation matrix arc derived. The kinematic differential equations of a member and system are deduced in the end. The Newmark direct integration method is used as the solution scheme of the kinematic differential equations to get the periodic response.
文摘Non-singular fictitious boundary integral equations for orthotropic elastic plane problems were deduced according to boundary conditions by the techniques of singular-points-outside-domain. Then the unknown fictitious load functions along the fictitious boundary were expressed in terms of basic spline functions, and the boundary-segment-least-squares method was proposed to eliminate the boundary residues obtained. By the above steps, numerical solutions to the integral equations can be achieved. Numerical examples are given to show the accuracy and efficiency of the proposed method.
文摘In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these two plate-models for the simply-supported rectangular orthotropic plates. The well-known fundamental solutions of the isotrqpic plates are utlized for the spline integral equation analysis of anisotropic plates.Even with sparse meshes the satisfactory results can be obtained. The analysis of plates on two-parameter elastic foundation is so simple as the common case that only a few terms should be added to the formulas of fictitious loads.