期刊文献+
共找到19,957篇文章
< 1 2 250 >
每页显示 20 50 100
Direct seawater splitting for hydrogen production:Recent advances in materials synthesis and technological innovation
1
作者 Yilin Zhao Zhipeng Yu +4 位作者 Aimin Ge Lujia Liu Joaquim Luis Faria Guiyin Xu Meifang Zhu 《Green Energy & Environment》 SCIE EI CAS 2025年第1期11-33,共23页
Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the ... Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production. 展开更多
关键词 Seawater splitting CATALYST Membranes Mixed seawater systems Self-powered systems
下载PDF
Bimetallic Single‑Atom Catalysts for Water Splitting
2
作者 Megha A.Deshmukh Aristides Bakandritsos Radek Zbořil 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期1-45,共45页
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ... Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process. 展开更多
关键词 Single-atom catalysts Single-atom dimers Hydrogen evolution Oxygen evolution Water splitting
下载PDF
Adult split liver transplantation to treat liver cancer: a single-center retrospective study
3
作者 Qiang Sun Haoze Cao +11 位作者 Xuesong Bai Xin Han Wanlu You Zhongquan Sun Yixin Zhang Xiaochang Wu Feng Fang Fan Wu Lianyue Yang Sheng Yan Yuan Ding Weilin Wang 《World Journal of Emergency Medicine》 2025年第1期57-62,共6页
BACKGROUND: The increasing morbidity of liver cancer has led to a growing demand for transplantation. Split liver transplantation(SLT) is a promising way to ameliorate organ shortages. However, the safety and efficacy... BACKGROUND: The increasing morbidity of liver cancer has led to a growing demand for transplantation. Split liver transplantation(SLT) is a promising way to ameliorate organ shortages. However, the safety and efficacy of SLT are still controversial. The aim of this study was to assess the clinical outcome of SLT in liver cancer patients at our center. METHODS: A total of 74 patients who received liver transplantation at a tertiary hospital from March 2019 to July 2023 were retrospectively studied, of whom 37 recipients underwent SLT and 37 recipients underwent whole-graft liver transplantation(WGLT). Clinical data were analyzed and compared between patients who underwent SLT and WGLT.RESULTS: SLT and WGLT were successfully performed, with no intraoperative transplantrelated mortality. Postoperatively, no significant differences in total bilirubin(TB, P=0.266), alanine transaminase(ALT, P=0.403) and aspartate transaminase(AST, P=0.160) levels within 30 d were detected between the two groups. The transplant-related mortality rates were 8.1% in the SLT group and 5.4% in the WGLT group within 30 d of surgery(P=1.000), and 10.8% and 8.1%, respectively, at 90 d after surgery(P=1.000). There were no significant differences in overall survival(OS) and progress-free survival(PFS) between the SLT and WGLT groups(P=0.910, P=0.190). CONCLUSION: Our results show that SLT does not imply additional risks in treating liver cancer compared with WGLT. 展开更多
关键词 ADULT split liver transplantation Liver cancer PROGNOSIS RETROSPECTIVE
下载PDF
Insights on advanced substrates for controllable fabrication of photoanodes toward efficient and stable photoelectrochemical water splitting 被引量:2
4
作者 Huilin Hou Gang Shao +2 位作者 Yang Wang Wai‐Yeung Wong Weiyou Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期164-221,共58页
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p... Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed. 展开更多
关键词 hydrogen PHOTOANODE PHOTOELECTROCHEMICAL SUBSTRATES water splitting
下载PDF
Ionic liquid derived electrocatalysts for electrochemical water splitting 被引量:2
5
作者 Tianhao Li Weihua Hu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期604-622,共19页
Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and... Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided. 展开更多
关键词 Ionic liquid Electrochemical water splitting Hydrogen evolution reaction Oxygen evolution reaction
下载PDF
Defect engineering in transition-metal(Fe,Co,andNi)-based electrocatalysts for water splitting 被引量:1
6
作者 Kaili Wu Chaojie Lyu +5 位作者 Jiarun Cheng Weifan Ding Jiwen Wu Qian Wang Woon-Ming Lau Jinlong Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期165-199,共35页
Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.De... Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications. 展开更多
关键词 defect engineering electrocatalytic water splitting element doping interfacial engineering VACANCY
下载PDF
Deactivation mechanism for water splitting:Recent advances 被引量:1
7
作者 Yansong Jia Yang Li +8 位作者 Qiong Zhang Sohail Yasin Xinyu Zheng Kai Ma Zhengli Hua Jianfeng Shi Chaohua Gu Yuhai Dou Shixue Dou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期53-82,共30页
Hydrogen(H_(2)) has been regarded as a promising alternative to fossil-fuel energy.Green H_(2) produced via water electrolysis(WE)powered by renewable energy could achieve a zero-carbon footprint.Considerable attentio... Hydrogen(H_(2)) has been regarded as a promising alternative to fossil-fuel energy.Green H_(2) produced via water electrolysis(WE)powered by renewable energy could achieve a zero-carbon footprint.Considerable attention has been focused on developing highly active catalysts to facilitate the reaction kinetics and improve the energy efficiency of WE.However,the stability of the electrocatalysts hampers the commercial viability of WE.Few studies have elucidated the origin of catalyst degradation.In this review,we first discuss the WE mechanism,including anodic oxygen evolution reaction(OER)and cathodic hydrogen evolution reaction(HER).Then,we provide strategies used to enhance the stability of electrocatalysts.After that,the deactivation mechanisms of the typical commercialized HER and OER catalysts,including Pt,Ni,RuO_(2),and IrO_(2),are summarized.Finally,the influence of fluctuating energy on catalyst degradation is highlighted and in situ characterization methodologies for understanding the dynamic deactivation processes are described. 展开更多
关键词 deactivation mechanism hydrogen evolution in situ characterization oxygen evolution water splitting
下载PDF
Atomically dispersed Ni electrocatalyst for superior urea-assisted water splitting 被引量:1
8
作者 Fang Luo Shuyuan Pan +3 位作者 Yuhua Xie Chen Li Yingjie Yu Zehui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期1-6,I0002,共7页
Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formatio... Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting. 展开更多
关键词 Urea oxidation reaction Hydrogen evolution reaction Nickel single atoms Water splitting
下载PDF
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design 被引量:1
9
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts Water splitting Hydrogen production Catalytic mechanism Synthesis technique Optimization design
下载PDF
Variations of shear-wave splitting parameters in the source region of the 2023 Türkiye doublet earthquakes 被引量:1
10
作者 Xuelai Cao Lijun Chang 《Earthquake Science》 2024年第2期174-187,共14页
In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1... In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1,2022,to April 25,2023,and their spatiotemporal characteristics were analyzed.The results revealed clear spatial and temporal differences.Spatially,the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress,as characterized by focal mechanism solutions of seismic events(MW≥3.5)near the station.The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate,African Plate,and Anatolian Block.Along the Nurdagi-Pazarcik fault zone,the seismic fault of event 1,stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock.In addition,the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgüfault also exhibited large delay times.The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field,which is closely related to the state of the block motion.During the seismogenic process of the MW7.7 earthquake,more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault.Under the influence of the MW7.7 and MW7.6 events,the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes,and the crustal stress and its adjustment range near the outer stations increased significantly.With the exception of two stations with few effective events,all stations showed a consistent change in shear-wave splitting parameters over time.In particular,each station showed a decreasing trend in delay times after the doublet earthquakes,reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes.With the occurrence of the earthquake doublet and a large number of aftershocks,the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released,and then the adjustment range of crustal stress is also gradually reduced. 展开更多
关键词 Türkiye doublet earthquakes shear-wave splitting upper crustal anisotropy stress field
下载PDF
Study on the S-wave Splitting Characteristics in the Longtan Reservoir Area,Guangxi,China
11
作者 Shi Haixia Zhao Cuiping 《Earthquake Research in China》 2011年第2期213-226,共14页
In this paper,the shear wave splitting features of the Longtan reservoir area are studied by adopting the traditional cross-correlation coefficient method and polarization analysis,using the data recorded by the seism... In this paper,the shear wave splitting features of the Longtan reservoir area are studied by adopting the traditional cross-correlation coefficient method and polarization analysis,using the data recorded by the seismic network founded by a project under the National Science and Technology Pillar Program from April 2009 to April 2010.We found that most of polarization directions at seismic stations are consistent with the direction of the overall regional stress field,but local structures and faults may control or influence the fast shear-wave polarization direction.The time-delay normalized to source-station path is between 10 to 25ms/km,and among them,the time-delay is about 10ms/km at the LIL and XIL sites,which are farther away from the dam.The water depth is relatively shallow and seismic activity relatively weak after water storage,indicating the effect of reservoir water penetration,or loading,on the state of cracks in the reservoir area.We also found that the delay time changes consistently with the water level at stations DPD and GAL.It may be related to crack expansion and water penetration caused by the reservoir impoundment. 展开更多
关键词 Longtan reservoir Seismic anisotropy Shear-wave splitting Fast shear-wavepolarization direction Delay time
下载PDF
Acoustic Bilayer Gradient Metasurfaces for Perfect and Asymmetric Beam Splitting
12
作者 权家琪 孙宝印 +2 位作者 伏洋洋 高雷 徐亚东 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第1期39-50,共12页
We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the int... We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the interlayer size.This concept arises from anomalous diffraction in phase gradient metasurfaces and the precise combination of the phase gradient in bilayer metasurfaces.Ensured by different diffraction routes in momentum space for incident beams from opposite directions,extremely asymmetric acoustic beam splitting can be generated in a robust way,as demonstrated in experiments through a designed bilayer system.Our work provides a novel approach and feasible platform for designing tunable devices to control wave propagation. 展开更多
关键词 SURFACES splitTING ASYMMETRIC
下载PDF
How to apply ex-vivo split liver transplantation safely and feasibly: A three-step approach
13
作者 Dong Zhao Qiu-Hua Xie +6 位作者 Tai-Shi Fang Kang-Jun Zhang Jian-Xin Tang Xu Yan Xin Jin Lin-Jie Xie Wen-Gui Xie 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第6期1691-1699,共9页
BACKGROUND Given the current organ shortage crisis,split liver transplantation(SLT)has emerged as a promising alternative for select end-stage liver disease patients.AIM To introduce an ex-vivo liver graft splitting a... BACKGROUND Given the current organ shortage crisis,split liver transplantation(SLT)has emerged as a promising alternative for select end-stage liver disease patients.AIM To introduce an ex-vivo liver graft splitting approach and evaluate its safety and feasibility in SLT.METHODS A retrospective analysis was conducted on the liver transplantation data from cases performed at our center between April 1,2022,and May 31,2023.The study included 25 SLT cases and 81 whole liver transplantation(WLT)cases.Total ex-vivo liver splitting was employed for SLT graft procurement in three steps.Patient outcomes were determined,including liver function parameters,postoperative complications,and perioperative mortality.Group comparisons for categorical variables were performed using theχ²-test.RESULTS In the study,postoperative complications in the 25 SLT cases included hepatic artery thrombosis(n=1)and pulmonary infections(n=3),with no perioperative mortality.In contrast,among the 81 patients who underwent WLT,complications included perioperative mortality(n=1),postoperative pulmonary infections(n=8),abdominal infection(n=1),hepatic artery thromboses(n=3),portal vein thrombosis(n=1),and intra-abdominal bleeding(n=5).Comparative analysis demonstrated significant differences in alanine aminotransferase(176.0 vs 73.5,P=0.000)and aspartate aminotransferase(AST)(42.0 vs 29.0,P=0.004)at 1 wk postoperatively,and in total bilirubin(11.8 vs 20.8,P=0.003)and AST(41.5 vs 26.0,P=0.014)at 2 wk postoperatively.However,the overall incidence of complications was comparable between the two groups(P>0.05).CONCLUSION Our findings suggest that the total ex-vivo liver graft splitting technique is a safe and feasible approach,especially under the expertise of an experienced transplant center.The approach developed by our center can serve as a valuable reference for other transplantation centers. 展开更多
关键词 split liver transplantation TRANSPLANTATION Liver splitting EX-VIVO IN-SITU
下载PDF
Defects and morphology engineering for constructing V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S nanotube heterojunction arrays toward efficient bifunctional electrocatalyst for overall water splitting
14
作者 Wenyuan Sun Alan Meng +4 位作者 Lei Wang Guicun Li Jinfeng Cui Yongkai Sun Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期29-40,共12页
The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube he... The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h. 展开更多
关键词 Nanotubearrays HETEROJUNCTION VACANCY Bifunctional electrocatalyst Overall water splitting
下载PDF
Tuning MXenes Towards Their Use in Photocatalytic Water Splitting
15
作者 Diego Ontiveros Sergi Vela +1 位作者 Francesc Viñes Carmen Sousa 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期321-331,共11页
Finding appropriate photocatalysts for solar-driven water(H_(2)O)splitting to generate hydrogen(H_(2))fuel is a challenging task,particularly when guided by conventional trial-and-error experimental methods.Here,densi... Finding appropriate photocatalysts for solar-driven water(H_(2)O)splitting to generate hydrogen(H_(2))fuel is a challenging task,particularly when guided by conventional trial-and-error experimental methods.Here,density functional theory(DFT)is used to explore the MXenes photocatalytic properties,an emerging family of two-dimensional(2D)transition metal carbides and nitrides with chemical formula M_(n+1)X_(n)T_(x),known to be semiconductors when having T_(x)terminations.More than 4,000 MXene structures have been screened,considering different compositional(M,X,T_(x),and n)and structural(stacking and termination position)factors,to find suitable MXenes with a bandgap in the visible region and band edges that align with the water-splitting half-reaction potentials.Results from bandgap analysis show how,in general,MXenes with n=1 and transition metals from group III present the most cases with bandgap and promising sizes,with C-MXenes being superior to N-MXenes.From band alignment calculations of candidate systems with a bandgap larger than 1.23 eV,the minimum required for a water-splitting process,Sc_(2)CT_(2),Y_(2)CT_(2)(T_(x)=Cl,Br,S,and Se)and Y_(2)CI_(2)are highlighted as adequate photocatalysts. 展开更多
关键词 Density Functional Theory MXenes PHOTOCATALYSIS Water splitting
下载PDF
The component-activity interrelationship of cobalt-based bifunctional electrocatalysts for overall water splitting:Strategies and performance
16
作者 Mingjie Sun Riyue Ge +4 位作者 Sean Li Liming Dai Yiran Li Bin Liu Wenxian Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期453-474,共22页
Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysi... Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications. 展开更多
关键词 COBALT Bifunctional electrocatalysis Water splitting Modification strategies Electrocatalytic performances
下载PDF
Molecular-level proton acceptor boosts oxygen evolution catalysis to enable efficient industrial-scale water splitting
17
作者 Yaobin Wang Qian Lu +7 位作者 Xinlei Ge Feng Li Le Chen Zhihui Zhang Zhengping Fu Yalin Lu Yang Song Yunfei Bu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期344-355,共12页
Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy... Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy to produce an efficient OER catalyst that can boost industrial-scale water splitting.Molecular-level phosphate(-PO_(4))group is introduced to modify the surface of PrBa_(0.5)Ca_(0.5)Co_(2)O_(5)+δ(PBCC).The achieved catalyst(PO_(4)-PBCC)exhibits significantly enhanced catalytic performance in alkaline media.Based on the X-ray absorption spectroscopy results and density functional theory(DFT)calculations,the PO_(4)on the surface,which is regarded as the Lewis base,is the key factor to overcome the kinetic limitation of the proton transfer process during the OER.The use of the catalyst in a membrane electrode assembly(MEA)is further evaluated for industrial-scale water splitting,and it only needs a low voltage of 1.66 V to achieve a large current density of 1 A cm^(-2).This work provides a new molecular-level strategy to develop highly efficient OER electrocatalysts for industrial applications. 展开更多
关键词 Oxygen evolution reaction NANOFIBER Water splitting Proton acceptor PEROVSKITE
下载PDF
Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
18
作者 Qian Wang Da-Wei Wu +2 位作者 Guang-Hua Guo Meng-Qiu Long Yun-Peng Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期194-198,共5页
Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomen... Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials. 展开更多
关键词 two-dimensional altermagnetic materials altermagnetism spin splitting first-principles calculations
下载PDF
Mechanism, modification and stability of tungsten oxide-based electrocatalysts for water splitting: A review
19
作者 Shuang Yu Xiaomei Yu +4 位作者 Huijing Yang Feng Li Songjie Li Young Soo Kang Jin You Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期23-49,共27页
Electrocatalysis plays a crucial role in the field of clean energy conversion and provides essential support for the development of eco-friendly technology. There is a pressing need for electrocatalysts in renewable e... Electrocatalysis plays a crucial role in the field of clean energy conversion and provides essential support for the development of eco-friendly technology. There is a pressing need for electrocatalysts in renewable energy systems that exhibit exceptional activity, selectivity, stability, and economic viability. The utilization of metal oxides as electrocatalysts for the process of water splitting has made substantial progress in both theoretical and practical aspects and has emerged as a widely explored field of research. Tungsten oxides(WO_(x)) have attracted much attention and are regarded as a highly promising electrocatalytic material due to their exceptional electrocatalytic activity, cost-effectiveness, and ability to withstand extreme conditions. This review introduces the fundamental mechanism of WOx-based electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction, providing a comprehensive overview of recent research advancements in their modification. Factors contributing to the catalytic activity and stability of WOxare explored, highlighting their potential for industrial applications. The aim herein is to provide guidelines for the design and fabrication of WOx-based electrocatalysts, thereby facilitating further research on their mechanistic properties and stability improvements in water splitting. 展开更多
关键词 Non-stoichiometric tungsten oxide Electrocatalytic water splitting MODIFICATION STABILITY Oxygen vacancies
下载PDF
Application of 9-component S-wave 3D seismic data to study sedimentary facies and reservoirs in a biogasbearing area:A case study on the Pleistocene Qigequan Formation in Taidong area,Sanhu Depression,Qaidam Basin,NW China
20
作者 XU Zhaohui LI Jiangtao +4 位作者 LI Jian CHEN Yan YANG Shaoyong WANG Yongsheng SHAO Zeyu 《Petroleum Exploration and Development》 SCIE 2024年第3期647-660,共14页
To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four... To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area. 展开更多
关键词 9-component s-wave 3D seismic data seismic sedimentology biogas sedimentary facies reservoir Qaidam Basin Sanhu Depression Pleistocene Qigequan Formation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部