期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation and Experimental Analysis of the Influence of Asymmetric Pressure Conditions on the Splitting of a Gas-Liquid Two-Phase Flow at a T-Junction 被引量:4
1
作者 Lihui Ma Limin He +1 位作者 Xiaoming Luo Xiangran Mi 《Fluid Dynamics & Materials Processing》 EI 2021年第5期959-970,共12页
Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid... Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid velocities.The flow rates in the two branches were measured accurately to determine how the two considered phases distribute in the two outlets.The experimental results have shown that when the two outlet pressures are asymmetric,the two-phase flow always tends to flow into the outlet which has a lower pressure.As the inlet liquid velocity increases,however,the two-phase flow gradually tends to split evenly.Compared with the experiment results,the pressure difference between the two outlets can be determined more accurately by means of numerical simulation.The trends of experimental results and simulations are in very good agreement. 展开更多
关键词 Two-phase flow PRESSURE flow loop gas-liquid split characteristics simulation
下载PDF
A SPLIT-CHARACTERISTIC FINITE ELEMENT MODEL FOR 1-D UNSTEADY FLOWS 被引量:8
2
作者 ZHOU Yi-lin TANG Hong-wu LIU Xiao-hua 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第1期54-61,共8页
An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the ... An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the Saint-Venant equations of 1-D unsteady flows was established. The assembled f'mite element equations were solved with the tri-diagonal matrix algorithm. In the semi-implicit and explicit scheme, the critical time step of the method was dependent on the space step and flow velocity, not on the wave celerity. The method was used to eliminate the restriction due to the wave celerity for the computational analysis of unsteady open-channel flows. The model was verified by the experimental data and theoretical solution and also applied to the simulation of the flow in practical river networks. It shows that the numerical method has high efficiency and accuracy and can be used to simulate 1-D steady flows, and unsteady flows with shock waves or flood waves. Compared with other numerical methods, the algorithm of this method is simpler with higher accuracy, less dissipation, higher computation efficiency and less computer storage. 展开更多
关键词 split characteristic finite element method tri-diagonal matrix algorithm 1-D unsteady flow flood wave river networks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部