DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structu...DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h~(-1)) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.展开更多
The green hydrogen generation powered by renewable electricity promises the potential decarbonization of the hard-to-abate sector and is essential for the fulfillment of the Paris Agreement that attempts to limit the ...The green hydrogen generation powered by renewable electricity promises the potential decarbonization of the hard-to-abate sector and is essential for the fulfillment of the Paris Agreement that attempts to limit the global average temperature rise in the range of 1.5–2.0 ℃ above the pre-industrial level by the end of this century. Tremendous efforts have been devoted to the optimization of the electrocatalytic performance of the catalysts under industrial-relevant current densities via rational structure design,which induces a preferential electron distribution that favors the adsorption/desorption behavior of the key intermediates, thus accelerating the reaction kinetics. In this review, a brief introduction of the current energy status will be first presented to necessitate the importance of green hydrogen.Followed by the basic concepts and fundamental understanding of the reaction mechanisms, we present efficient strategies for the enhancement of the electrocatalytic performance of the catalysts to meet the rigorous requirement under industrial conditions and the in-depth understanding behind the reinforcement will be briefly discussed next. Then the recent advances regarding the rational design of electrocatalysts operating at an industrial scale will be summarized. Finally, the challenges and perspectives in this thriving field will be proposed from our point of view.展开更多
基金Supported by Program for Changjiang Scholars and Innovative Research Team in University,Ministry of Education of China(PCSIRT)
文摘DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h~(-1)) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.
基金supported by the Program for Innovative Research Team in University of Henan Province(21IRTSTHN009)the Science and Technology Development Plan of Henan Province(212300410029,202300410087,202102210251)+2 种基金the Central Government of Shenzhen Guided the Local Science and Technology Exhibition Special Funds(2021Szvup031)the National Natural Science Foundation of China(52102166)the China Postdoctoral Science Foundation(2019M663058,2021M701065,2019M652749,2021M701071)。
文摘The green hydrogen generation powered by renewable electricity promises the potential decarbonization of the hard-to-abate sector and is essential for the fulfillment of the Paris Agreement that attempts to limit the global average temperature rise in the range of 1.5–2.0 ℃ above the pre-industrial level by the end of this century. Tremendous efforts have been devoted to the optimization of the electrocatalytic performance of the catalysts under industrial-relevant current densities via rational structure design,which induces a preferential electron distribution that favors the adsorption/desorption behavior of the key intermediates, thus accelerating the reaction kinetics. In this review, a brief introduction of the current energy status will be first presented to necessitate the importance of green hydrogen.Followed by the basic concepts and fundamental understanding of the reaction mechanisms, we present efficient strategies for the enhancement of the electrocatalytic performance of the catalysts to meet the rigorous requirement under industrial conditions and the in-depth understanding behind the reinforcement will be briefly discussed next. Then the recent advances regarding the rational design of electrocatalysts operating at an industrial scale will be summarized. Finally, the challenges and perspectives in this thriving field will be proposed from our point of view.