A new hybrid numerical scheme of combining an E-CUSP(Energy-Convective Upwind and Split Pressure) method for the fluid part and the Constrained Transport(CT) for the magnetic induction part is proposed.In order to avo...A new hybrid numerical scheme of combining an E-CUSP(Energy-Convective Upwind and Split Pressure) method for the fluid part and the Constrained Transport(CT) for the magnetic induction part is proposed.In order to avoid the occurrence of negative pressure in the reconstructed profiles and its updated value,a positivity preserving method is provided.Furthermore,the MHD equations are solved at each physical time step by advancing in pseudo time.The use of dual time stepping is beneficial in the computation since the use of dual time stepping allows the physical time step not to be limited by the corresponding values in the smallest cell and to be selected based on the numerical accuracy criterion.This newly established hybrid scheme combined with positivity preserving method and dual time technique has demonstrated the accurateness and robustness through numerical experiments of benchmark problems such as the 2D Orszag-Tang vortex problem and the3 D shock-cloud interaction problem.展开更多
Two high-order splitting schemes based on the idea of the operators splitting method are given. The three-dimensional advection-diffusion equation was split into several one-dimensional equations that were solved by t...Two high-order splitting schemes based on the idea of the operators splitting method are given. The three-dimensional advection-diffusion equation was split into several one-dimensional equations that were solved by these two schemes, only three computational grid points were needed in each direction but the accuracy reaches the spatial fourth-order. The third scheme proposed is based on the classical ADI scheme and the accuracy of the advection term of it can reach the spatial fourth-order. Finally, two typical numerical experiments show that the solutions of these three schemes compare well with that given by the analytical solution when the Peclet number is not bigger than 5.展开更多
WT5,5”BX] A new class of numerical schemes is proposed to solve convection diffusion equations by combining the upwind technique and the method of operator splitting. For every time step, the multi dimensional approx...WT5,5”BX] A new class of numerical schemes is proposed to solve convection diffusion equations by combining the upwind technique and the method of operator splitting. For every time step, the multi dimensional approximation is performed in several independent directions alternatively, while the upwind technique is applied to treat the convection term in every individual direction. This scheme possesses maximum principle. Stability and convergence are analysed by energy method.[WT5,5”HZ]展开更多
We propose a novel strategy numed basis-splitting scheme to split the intercepted quanta into several portions based on different bases, for eavesdropping in the process of quantum cryptography. Compared with intercep...We propose a novel strategy numed basis-splitting scheme to split the intercepted quanta into several portions based on different bases, for eavesdropping in the process of quantum cryptography. Compared with intercept- resend strategy, our simulation results of the basis-splitting scheme under the non-ideal condition show a greater performance, especially with the increase of the length of shifted bits. Consequently our scheme can aid eaves- dropper to gather much more useful information.展开更多
Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly im...Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.展开更多
An upwind scheme based on the unstructured mesh is developed to solve ideal 2-D magnetohydrodynamics (MHD) equations. The inviscid fluxes are approximated by using the modified advection upstream splitting method (...An upwind scheme based on the unstructured mesh is developed to solve ideal 2-D magnetohydrodynamics (MHD) equations. The inviscid fluxes are approximated by using the modified advection upstream splitting method (AUSM) scheme, and a 5-stage explicit Runge-Kutta scheme is adopted in the time integration. To avoid the influence of the magnetic field divergence created during the simulation, the hyperbolic divergence cleaning method is introduced. The shock-capturing properties of the method are verified by solving the MHD shock-tube problem. Then the 2-D nozzle flow with the magnetic field is numerically simulated on the unstructured mesh. Computational results demonstrate the effects of the magnetic field and agree well with those from references.展开更多
Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with ...Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.展开更多
A kinetic flux-vector splitting (KFVS) scheme is applied for solving a reduced six-equation two-phase flow model of Saurel et al. [1]. The model incorporates single velocity, two pressures and relaxation terms. An add...A kinetic flux-vector splitting (KFVS) scheme is applied for solving a reduced six-equation two-phase flow model of Saurel et al. [1]. The model incorporates single velocity, two pressures and relaxation terms. An additional seventh equation, describing the total mixture energy, is added to the model to guarantee the correct treatment of shocks in the single phase limit. Some salient features of the model are that it is hyperbolic with only three wave propagation speeds and the volume fraction remains positive. The proposed numerical scheme is based on the direct splitting of macroscopic flux functions of the system of equations. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Moreover, a pressure relaxation procedure is used to fulfill the interface conditions. For validation, the results of suggested scheme are compared with those from the high resolution central upwind and HLLC schemes. The central upwind scheme is also applied for the first time to this model. The accuracy, efficiency and simplicity of the KFVS scheme demonstrate its potential for modeling two-phase flows.展开更多
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation r...For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution.展开更多
Design method of split planar resonant inductor in 1 kV SiC logical link control(LLC)converter is proposed,which ensures the converter power density of 93.59 W/in^3 and peak efficiency of 95.73%.Split resonant inducto...Design method of split planar resonant inductor in 1 kV SiC logical link control(LLC)converter is proposed,which ensures the converter power density of 93.59 W/in^3 and peak efficiency of 95.73%.Split resonant inductor helps to provide symmetrical resonant current by symmetrical impedance,and improves the distortion of resonant current,which ensures the efficiency of the whole converter.An interleaved winding connecting scheme improves the power density of the planar magnets,which contributes to power density improvement.Design method and calculation process of such split planar resonant inductor are provided.To verify the feasibility of the proposed design method,a 1 kV/48 V 6.6 kW,210 k Hz SiC LLC prototype was built,and the experimental results are given.展开更多
In this work, a new numerical technique is proposed for the resolution of a fluid model based on three Boltzmann moments. The main purpose of this technique is to calculate electric and physical properties in the non-...In this work, a new numerical technique is proposed for the resolution of a fluid model based on three Boltzmann moments. The main purpose of this technique is to calculate electric and physical properties in the non-equilibrium electric discharge at low pressure. The transport and Poisson's equations form a self-consistent model. This equation system is written in cylindrical coordinates following the geometric shape of a plasma reactor. Our transport equation system is discretized using the finite volume approach and resolved by the N-BEE explicit scheme coupled to the time splitting method. This programming structure reduces computation time considerably. The 2D code is carried out and tested by comparing our results with those found in literature.展开更多
In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the...In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the traditional splitting methods but also can the physical feature of mutual dependence of the fast and the slow stages that are calculated separately and splittingly be kept as well. Moreover, the method owns an universality, it can be generalized to other square-conservative difference schemes, such as the implicit and complete ones and the explicit and instantaneous ones. Good time benefits can be acquired when it is applied in the numerical simulations of the monthly mean currents of the South China Sea.展开更多
The paper is devised to combine the approximated semi-Lagrange weighted essentially non-oscillatory scheme and flux vector splitting. The approximated finite volume semi-Lagrange that is weighted essentially non-oscil...The paper is devised to combine the approximated semi-Lagrange weighted essentially non-oscillatory scheme and flux vector splitting. The approximated finite volume semi-Lagrange that is weighted essentially non-oscillatory scheme with Roe flux had been proposed. The methods using Roe speed to construct the flux probably generates entropy-violating solutions. More seriously, the methods maybe perform numerical instability in two-dimensional cases. A robust and simply remedy is to use a global flux splitting to substitute Roe flux. The combination is tested by several numerical examples. In addition, the comparisons of computing time and resolution between the classical weighted essentially non-oscillatory scheme (WENOJS-LF) and the semi-Lagrange weighted essentially non-oscillatory scheme (WENOEL-LF) which is presented (both combining with the flux vector splitting).展开更多
基金Supported by the National Basic Research Program of China(2012CB825601)the National Natural Science Foundationof China(41031066,41231068,41274192,41074121,41204127)+1 种基金the Knowledge Innovation Program of the ChineseAcademy of Sciences(KZZD-EW-01-4)the Specialized Research Fund for State Key Laboratories
文摘A new hybrid numerical scheme of combining an E-CUSP(Energy-Convective Upwind and Split Pressure) method for the fluid part and the Constrained Transport(CT) for the magnetic induction part is proposed.In order to avoid the occurrence of negative pressure in the reconstructed profiles and its updated value,a positivity preserving method is provided.Furthermore,the MHD equations are solved at each physical time step by advancing in pseudo time.The use of dual time stepping is beneficial in the computation since the use of dual time stepping allows the physical time step not to be limited by the corresponding values in the smallest cell and to be selected based on the numerical accuracy criterion.This newly established hybrid scheme combined with positivity preserving method and dual time technique has demonstrated the accurateness and robustness through numerical experiments of benchmark problems such as the 2D Orszag-Tang vortex problem and the3 D shock-cloud interaction problem.
文摘Two high-order splitting schemes based on the idea of the operators splitting method are given. The three-dimensional advection-diffusion equation was split into several one-dimensional equations that were solved by these two schemes, only three computational grid points were needed in each direction but the accuracy reaches the spatial fourth-order. The third scheme proposed is based on the classical ADI scheme and the accuracy of the advection term of it can reach the spatial fourth-order. Finally, two typical numerical experiments show that the solutions of these three schemes compare well with that given by the analytical solution when the Peclet number is not bigger than 5.
文摘WT5,5”BX] A new class of numerical schemes is proposed to solve convection diffusion equations by combining the upwind technique and the method of operator splitting. For every time step, the multi dimensional approximation is performed in several independent directions alternatively, while the upwind technique is applied to treat the convection term in every individual direction. This scheme possesses maximum principle. Stability and convergence are analysed by energy method.[WT5,5”HZ]
基金Supported by the National Natural Science Foundation of China under Grant Nos 61301171 and 61372076the Fundamental Research Funds for the Central Universities of China under Grant No K5051301018the National 111 Project of Higher Education of China under Grant No B8038
文摘We propose a novel strategy numed basis-splitting scheme to split the intercepted quanta into several portions based on different bases, for eavesdropping in the process of quantum cryptography. Compared with intercept- resend strategy, our simulation results of the basis-splitting scheme under the non-ideal condition show a greater performance, especially with the increase of the length of shifted bits. Consequently our scheme can aid eaves- dropper to gather much more useful information.
文摘Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.
文摘An upwind scheme based on the unstructured mesh is developed to solve ideal 2-D magnetohydrodynamics (MHD) equations. The inviscid fluxes are approximated by using the modified advection upstream splitting method (AUSM) scheme, and a 5-stage explicit Runge-Kutta scheme is adopted in the time integration. To avoid the influence of the magnetic field divergence created during the simulation, the hyperbolic divergence cleaning method is introduced. The shock-capturing properties of the method are verified by solving the MHD shock-tube problem. Then the 2-D nozzle flow with the magnetic field is numerically simulated on the unstructured mesh. Computational results demonstrate the effects of the magnetic field and agree well with those from references.
基金Hundred Talent Program of Chinese Academy of Sciences under Grant No. 0300YQ000101. Partly supported by the National Natural Sci
文摘Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.
文摘A kinetic flux-vector splitting (KFVS) scheme is applied for solving a reduced six-equation two-phase flow model of Saurel et al. [1]. The model incorporates single velocity, two pressures and relaxation terms. An additional seventh equation, describing the total mixture energy, is added to the model to guarantee the correct treatment of shocks in the single phase limit. Some salient features of the model are that it is hyperbolic with only three wave propagation speeds and the volume fraction remains positive. The proposed numerical scheme is based on the direct splitting of macroscopic flux functions of the system of equations. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Moreover, a pressure relaxation procedure is used to fulfill the interface conditions. For validation, the results of suggested scheme are compared with those from the high resolution central upwind and HLLC schemes. The central upwind scheme is also applied for the first time to this model. The accuracy, efficiency and simplicity of the KFVS scheme demonstrate its potential for modeling two-phase flows.
基金the Major State Basic Research Program of China(19990328)NNSF of China(19871051,19972039) the Doctorate Foundation of the State Education Commission
文摘For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution.
基金supported by the National Key Research and Development Program of China (2018YFB0904101)Science and Technology Project of State Grid (SG SGHB0000KXJS1800685)
文摘Design method of split planar resonant inductor in 1 kV SiC logical link control(LLC)converter is proposed,which ensures the converter power density of 93.59 W/in^3 and peak efficiency of 95.73%.Split resonant inductor helps to provide symmetrical resonant current by symmetrical impedance,and improves the distortion of resonant current,which ensures the efficiency of the whole converter.An interleaved winding connecting scheme improves the power density of the planar magnets,which contributes to power density improvement.Design method and calculation process of such split planar resonant inductor are provided.To verify the feasibility of the proposed design method,a 1 kV/48 V 6.6 kW,210 k Hz SiC LLC prototype was built,and the experimental results are given.
文摘In this work, a new numerical technique is proposed for the resolution of a fluid model based on three Boltzmann moments. The main purpose of this technique is to calculate electric and physical properties in the non-equilibrium electric discharge at low pressure. The transport and Poisson's equations form a self-consistent model. This equation system is written in cylindrical coordinates following the geometric shape of a plasma reactor. Our transport equation system is discretized using the finite volume approach and resolved by the N-BEE explicit scheme coupled to the time splitting method. This programming structure reduces computation time considerably. The 2D code is carried out and tested by comparing our results with those found in literature.
基金Partly supported by the State Major Key Project for Basic Researches
文摘In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the traditional splitting methods but also can the physical feature of mutual dependence of the fast and the slow stages that are calculated separately and splittingly be kept as well. Moreover, the method owns an universality, it can be generalized to other square-conservative difference schemes, such as the implicit and complete ones and the explicit and instantaneous ones. Good time benefits can be acquired when it is applied in the numerical simulations of the monthly mean currents of the South China Sea.
文摘The paper is devised to combine the approximated semi-Lagrange weighted essentially non-oscillatory scheme and flux vector splitting. The approximated finite volume semi-Lagrange that is weighted essentially non-oscillatory scheme with Roe flux had been proposed. The methods using Roe speed to construct the flux probably generates entropy-violating solutions. More seriously, the methods maybe perform numerical instability in two-dimensional cases. A robust and simply remedy is to use a global flux splitting to substitute Roe flux. The combination is tested by several numerical examples. In addition, the comparisons of computing time and resolution between the classical weighted essentially non-oscillatory scheme (WENOJS-LF) and the semi-Lagrange weighted essentially non-oscillatory scheme (WENOEL-LF) which is presented (both combining with the flux vector splitting).