Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with ...Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.展开更多
In this work, a new numerical technique is proposed for the resolution of a fluid model based on three Boltzmann moments. The main purpose of this technique is to calculate electric and physical properties in the non-...In this work, a new numerical technique is proposed for the resolution of a fluid model based on three Boltzmann moments. The main purpose of this technique is to calculate electric and physical properties in the non-equilibrium electric discharge at low pressure. The transport and Poisson's equations form a self-consistent model. This equation system is written in cylindrical coordinates following the geometric shape of a plasma reactor. Our transport equation system is discretized using the finite volume approach and resolved by the N-BEE explicit scheme coupled to the time splitting method. This programming structure reduces computation time considerably. The 2D code is carried out and tested by comparing our results with those found in literature.展开更多
A new hybrid numerical scheme of combining an E-CUSP(Energy-Convective Upwind and Split Pressure) method for the fluid part and the Constrained Transport(CT) for the magnetic induction part is proposed.In order to avo...A new hybrid numerical scheme of combining an E-CUSP(Energy-Convective Upwind and Split Pressure) method for the fluid part and the Constrained Transport(CT) for the magnetic induction part is proposed.In order to avoid the occurrence of negative pressure in the reconstructed profiles and its updated value,a positivity preserving method is provided.Furthermore,the MHD equations are solved at each physical time step by advancing in pseudo time.The use of dual time stepping is beneficial in the computation since the use of dual time stepping allows the physical time step not to be limited by the corresponding values in the smallest cell and to be selected based on the numerical accuracy criterion.This newly established hybrid scheme combined with positivity preserving method and dual time technique has demonstrated the accurateness and robustness through numerical experiments of benchmark problems such as the 2D Orszag-Tang vortex problem and the3 D shock-cloud interaction problem.展开更多
A novel Time-Interleaved Analog-to-Digital Converter (TIADC) digital background calibration for the mismatches of offsets, gain errors, and timing skews based on split-ADC is proposed. Firstly, the split-ADC channels ...A novel Time-Interleaved Analog-to-Digital Converter (TIADC) digital background calibration for the mismatches of offsets, gain errors, and timing skews based on split-ADC is proposed. Firstly, the split-ADC channels in present TIADC architecture are designed to convert input signal at two different channel sampling rates so that redundant channel to facilitate pair permutation is avoided. Secondly, a high-order compensation scheme for correction of timing skew error is employed for effective calibration to preserve high-resolution when input frequency is high. Numerical simulation performed by MATLAB for a 14-bit TIADC based on 7 split-ADC channels shows that Signal-to-Noise and Distortion Ratio (SNDR) and Spurious Free Dynamic Range (SFDR) of the TIADC achieve 86.2 dBc and 106 dBc respectively after calibration with normalized input frequency near Nyquist frequency.展开更多
Using seismic waveform data recorded at station YK (Yingkou) of Liaoning Telemetry Digital Seismic Network, this paper studied the characteristics of shear-wave splitting before and after the Xiuyan MS5.9 (ML5.3) eart...Using seismic waveform data recorded at station YK (Yingkou) of Liaoning Telemetry Digital Seismic Network, this paper studied the characteristics of shear-wave splitting before and after the Xiuyan MS5.9 (ML5.3) earthquake in November 29, 1999 with SAM method. The results show that the predominant polarizations of fast shear-waves at YK is in direction of ENE-WSW, consistent with the direction of regional principal compressive stress and also consistent with the direction of the regional tectonic stress field in North China; time-delays increasing before Xiuyan earthquake may shows accumulation of stress before earthquake. The predominant polarizations of fast shear-waves at YK are also related to the spatial distribution of small earthquakes and correlate with the fault strike. The histogram of monthly average polarizations of fast shear-waves shows that polarizations of fast shear-waves also seems to change from two months before the earthquake, but it still needs more data for verification.展开更多
This paper mainly observed and analyzed the character of shear-wave splitting in rock specimens while they were in the critical state of rupture. The rock specimens for study are made of Laizhou marble from Shandong, ...This paper mainly observed and analyzed the character of shear-wave splitting in rock specimens while they were in the critical state of rupture. The rock specimens for study are made of Laizhou marble from Shandong, China. A series of records were obtained from two rock specimens when they were in the critical state of rupture. The result shows that, in the critical state just before rock rupture, there may be the phenomenon of rise and fall in the time delay of shear-wave splitting, even though the load was kept constant. That is to say, the time delay of shear-wave splitting may have a falling process before rock rupture.展开更多
基金Hundred Talent Program of Chinese Academy of Sciences under Grant No. 0300YQ000101. Partly supported by the National Natural Sci
文摘Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.
文摘In this work, a new numerical technique is proposed for the resolution of a fluid model based on three Boltzmann moments. The main purpose of this technique is to calculate electric and physical properties in the non-equilibrium electric discharge at low pressure. The transport and Poisson's equations form a self-consistent model. This equation system is written in cylindrical coordinates following the geometric shape of a plasma reactor. Our transport equation system is discretized using the finite volume approach and resolved by the N-BEE explicit scheme coupled to the time splitting method. This programming structure reduces computation time considerably. The 2D code is carried out and tested by comparing our results with those found in literature.
基金Supported by the National Basic Research Program of China(2012CB825601)the National Natural Science Foundationof China(41031066,41231068,41274192,41074121,41204127)+1 种基金the Knowledge Innovation Program of the ChineseAcademy of Sciences(KZZD-EW-01-4)the Specialized Research Fund for State Key Laboratories
文摘A new hybrid numerical scheme of combining an E-CUSP(Energy-Convective Upwind and Split Pressure) method for the fluid part and the Constrained Transport(CT) for the magnetic induction part is proposed.In order to avoid the occurrence of negative pressure in the reconstructed profiles and its updated value,a positivity preserving method is provided.Furthermore,the MHD equations are solved at each physical time step by advancing in pseudo time.The use of dual time stepping is beneficial in the computation since the use of dual time stepping allows the physical time step not to be limited by the corresponding values in the smallest cell and to be selected based on the numerical accuracy criterion.This newly established hybrid scheme combined with positivity preserving method and dual time technique has demonstrated the accurateness and robustness through numerical experiments of benchmark problems such as the 2D Orszag-Tang vortex problem and the3 D shock-cloud interaction problem.
基金Supported by the National Natural Science Foundation of China (No. 61076026)
文摘A novel Time-Interleaved Analog-to-Digital Converter (TIADC) digital background calibration for the mismatches of offsets, gain errors, and timing skews based on split-ADC is proposed. Firstly, the split-ADC channels in present TIADC architecture are designed to convert input signal at two different channel sampling rates so that redundant channel to facilitate pair permutation is avoided. Secondly, a high-order compensation scheme for correction of timing skew error is employed for effective calibration to preserve high-resolution when input frequency is high. Numerical simulation performed by MATLAB for a 14-bit TIADC based on 7 split-ADC channels shows that Signal-to-Noise and Distortion Ratio (SNDR) and Spurious Free Dynamic Range (SFDR) of the TIADC achieve 86.2 dBc and 106 dBc respectively after calibration with normalized input frequency near Nyquist frequency.
基金Basis and Special Research Foundation, Institute of Earthquake Science, China Earthquake Administration (2007-24)
文摘Using seismic waveform data recorded at station YK (Yingkou) of Liaoning Telemetry Digital Seismic Network, this paper studied the characteristics of shear-wave splitting before and after the Xiuyan MS5.9 (ML5.3) earthquake in November 29, 1999 with SAM method. The results show that the predominant polarizations of fast shear-waves at YK is in direction of ENE-WSW, consistent with the direction of regional principal compressive stress and also consistent with the direction of the regional tectonic stress field in North China; time-delays increasing before Xiuyan earthquake may shows accumulation of stress before earthquake. The predominant polarizations of fast shear-waves at YK are also related to the spatial distribution of small earthquakes and correlate with the fault strike. The histogram of monthly average polarizations of fast shear-waves shows that polarizations of fast shear-waves also seems to change from two months before the earthquake, but it still needs more data for verification.
基金the Science and Technology Activity B on Study-abroad Return Scholar of Non-Education System.
文摘This paper mainly observed and analyzed the character of shear-wave splitting in rock specimens while they were in the critical state of rupture. The rock specimens for study are made of Laizhou marble from Shandong, China. A series of records were obtained from two rock specimens when they were in the critical state of rupture. The result shows that, in the critical state just before rock rupture, there may be the phenomenon of rise and fall in the time delay of shear-wave splitting, even though the load was kept constant. That is to say, the time delay of shear-wave splitting may have a falling process before rock rupture.