期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Configurable topological beam splitting via antichiral gyromagnetic photonic crystal 被引量:1
1
作者 Jianfeng Chen Zhi-Yuan Li 《Opto-Electronic Science》 2022年第5期26-37,共12页
Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states pr... Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges.Here,we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC.The splitter is compact and configurable,has high trans-mission efficiency,and allows for multi-channel utilization,crosstalk-proof,and robust against defects and obstacles.This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC.When we combine two rectangular antichiral GPCs holding left-and right-propagating antichiral one-way edge states respectively,bidirectionally radiating one-way edge states at two paral-lel zigzag edges can be achieved.Our observations can enrich the understanding of fundamental physics and expand to-pological photonic applications. 展开更多
关键词 topological photonics one-way edge state photonic crystal beam splitting topological materials
下载PDF
Acoustic beam splitting in a sonic crystal around a directional band gap
2
作者 Ahmet Cicek Olgun Adem Kaya Bulent Ulug 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期350-355,共6页
Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of ... Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle. 展开更多
关键词 sonic crystal directional band gap source size beam splitting
下载PDF
Intensity correlation properties of x-ray beams split with Laue diffraction
3
作者 赵昌哲 司尚禹 +3 位作者 张海鹏 薛莲 李中亮 肖体乔 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期379-383,共5页
Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we i... Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging. 展开更多
关键词 x-ray ghost imaging beam splitting with Laue diffraction intensity correlation dynamical theory of x-ray diffraction
下载PDF
Optical analysis of a hybrid solar concentrating Photovoltaic /Thermal (CPV/T) system with beam splitting technique 被引量:11
4
作者 HU Peng ZHANG Qian +3 位作者 LIU Yang SHENG ChunChen CHENG XiaoFang CHEN ZeShao 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第6期1387-1394,共8页
A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: o... A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: one for the PV power generation and the other for thermal utility. The solar concentrator is a flat Fresnel-type concentrator with glass mirror reflectors. It can concentrate solar radiation onto solar cells with high uniformity, which is beneficial to improving the efficiency of solar cells. The thermal receiver is separated to the solar cells, and therefore, the thermal fluid can be heated to a relatively high temperature and does not affect the performance of solar cells. A dimensionless model was developed for the performance analysis of the concentrating system. The effects of the main parameters on the performance of the concentrator were analyzed. The beam splitter with coating materials Nb2O3 /SiO2 was designed by using the needle optimization technique, which can reflect about 71% of the undesired radiation for silicon cell(1.1m < 3m) to the thermal receiver for thermal utility. The performance of this CPV/T system was also theoretically analyzed. 展开更多
关键词 solar energy hybrid concentrating Photovoltaic/Thermal (CPV/T) system flat Fresnel-type concentrator beam splitting
原文传递
Wideband Channel Estimation for THz Massive MIMO 被引量:5
5
作者 Jingbo Tan Linglong Dai 《China Communications》 SCIE CSCD 2021年第5期66-80,共15页
Terahertz(THz)communication is considered to be a promising technology for future 6G network.To overcome the severe attenuation and relieve the high power consumption,massive multipleinput multiple-output(MIMO)with hy... Terahertz(THz)communication is considered to be a promising technology for future 6G network.To overcome the severe attenuation and relieve the high power consumption,massive multipleinput multiple-output(MIMO)with hybrid precoding has been widely considered for THz communication.However,accurate wideband channel estimation,which is essential for hybrid precoding,is challenging in THz massive MIMO systems.The existing wideband channel estimation schemes based on the ideal assumption of common sparse channel support will suffer from a severe performance loss due to the beam split effect.In this paper,we propose a beam split pattern detection based channel estimation scheme to realize reliable wideband channel estimation in THz massive MIMO systems.Specifically,a comprehensive analysis on the angle-domain sparse structure of the wideband channel is provided by considering the beam split effect.Based on the analysis,we define a series of index sets called as beam split patterns,which are proved to have a one-to-one match to different physical channel directions.Inspired by this one-to-one match,we propose to estimate the physical channel direction by exploiting beam split patterns at first.Then,the sparse channel supports at different subcarriers can be obtained by utilizing a support detection window.This support detection window is generated by expanding the beam split pattern which is determined by the obtained physical channel direction.The above estimation procedure will be repeated path by path until all path components are estimated.Finally,the wideband channel can be recovered by calculating the elements on the total sparse channel support at all subcarriers.The proposed scheme exploits the wideband channel property implied by the beam split effect,i.e.,beam split pattern,which can significantly improve the channel estimation accuracy.Simulation results show that the proposed scheme is able to achieve higher accuracy than existing schemes. 展开更多
关键词 THz communication massive MIMO hybrid precoding beam split wideband channel estimation
下载PDF
On-line beam diagnostics based on single-shot beam splitting phase retrieval 被引量:1
6
作者 Xi He Cheng Liu and 《Chinese Optics Letters》 SCIE EI CAS CSCD 2018年第9期39-45,共7页
We propose a novel on-line beam diagnostic method based on single-shot beam splitting phase retrieval. The incident beam to be measured is diffracted into many replicas by a Dammann grating and then propagates through... We propose a novel on-line beam diagnostic method based on single-shot beam splitting phase retrieval. The incident beam to be measured is diffracted into many replicas by a Dammann grating and then propagates through a weakly scattering phase plate with a known structure; the exiting beams propagate along their original direction and form an array of diffraction patterns on the detector plane. By applying the intensity of diffraction patterns into an iterative algorithm and calculating between the grating plane, weakly scattering plane, and detector plane, the complex field of the incident beam can be reconstructed rapidly; the feasibility of this method is verified experimentally with wavelengths of 1053 and 632.8 nm. 展开更多
关键词 LENGTH On-line beam diagnostics based on single-shot beam splitting phase retrieval PIE
原文传递
Optical reflective metasurfaces based on mirror-coupled slot antennas 被引量:1
7
作者 Sven Ebe Yadong Deng +5 位作者 Mario Hentsche Chao Meng Sören im Sande Harald Giessen Fei Ding Sergey I.Bozhevolnyi 《Advanced Photonics Nexus》 2023年第1期44-52,共9页
Electrically connected optical metasurfaces with high efficiencies are crucial for developing spatiotemporal metadevices with ultrahigh spatial and ultrafast temporal resolutions.While efficient metal–insulator–meta... Electrically connected optical metasurfaces with high efficiencies are crucial for developing spatiotemporal metadevices with ultrahigh spatial and ultrafast temporal resolutions.While efficient metal–insulator–metal(MIM)metasurfaces containing discretized meta-atoms require additional electrodes,Babinet-inspired slot-antenna-based plasmonic metasurfaces suffer from low efficiencies and limited phase coverage for copolarized optical fields.Capitalizing on the concepts of conventional MIM and slot-antenna metasurfaces,we design and experimentally demonstrate a new type of optical reflective metasurfaces consisting of mirrorcoupled slot antennas(MCSAs).By tuning the dimensions of rectangular-shaped nanoapertures atop a dielectric-coated gold mirror,we achieve efficient phase modulation within a sufficiently large range of 320 deg and realize functional phase-gradient metadevices for beam steering and beam splitting in the near-infrared range.The fabricated samples show(22%2%)diffraction efficiency for beam steering and(17%1%)for beam splitting at the wavelength of 790 nm.The considered MCSA configuration,dispensing with auxiliary electrodes,offers an alternative and promising platform for electrically controlled reflective spatiotemporal metasurfaces. 展开更多
关键词 optical reflective metasurfaces beam steering beam splitting
下载PDF
In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses
8
作者 Rajendran Rajeev Johannes Hellwagner +8 位作者 Anne Schumacher Inga Jordan Martin Huppert Andres Tehlar Bhargava Ram Niraghatam Denitsa Baykusheva Nan Lin Aaron von Conta Hans Jakob Wörner 《Light(Science & Applications)》 SCIE EI CAS CSCD 2016年第1期396-402,共7页
Monochromatization of high-harmonic sources has opened fascinating perspectives regarding time-resolved photoemission from all phases of matter.Such studies have invariably involved the use of spectral filters or spec... Monochromatization of high-harmonic sources has opened fascinating perspectives regarding time-resolved photoemission from all phases of matter.Such studies have invariably involved the use of spectral filters or spectrally dispersive optical components that are inherently lossy and technically complex.Here we present a new technique for the spectral selection of near-threshold harmonics and their spatial separation from the driving beams without any optical elements.We discover the existence of a narrow phase-matching gate resulting from the combination of the non-collinear generation geometry in an extended medium,atomic resonances and absorption.Our technique offers a filter contrast of up to 104 for the selected harmonics against the adjacent ones and offers multiple temporally synchronized beamlets in a single unified scheme.We demonstrate the selective generation of 133,80 or 56 nm femtosecond pulses from a 400-nm driver,which is specific to the target gas.These results open new pathways towards phase-sensitive multi-pulse spectroscopy in the vacuum-and extreme-ultraviolet,and frequencyselective output coupling from enhancement cavities. 展开更多
关键词 beam splitting below-threshold harmonics coherent extreme-ultraviolet pulses frequency gating non-collinear generation
原文传递
Infrared-controlled programmable metasurface 被引量:9
9
作者 Ya-Lun Sun Xin-Ge Zhang +2 位作者 Qian Yu Wei-Xiang Jiang Tie-Jun Cui 《Science Bulletin》 SCIE EI CAS CSCD 2020年第11期883-888,M0003,共7页
Programmable metasurface enables controlling electromagnetic (EM) waves in real time. By programming the states of active device embedded in metasurface element, the EM properties of the digital metasurface can be cha... Programmable metasurface enables controlling electromagnetic (EM) waves in real time. By programming the states of active device embedded in metasurface element, the EM properties of the digital metasurface can be changed quickly without redesigning their structures. However, large numbers of long-distance wires are required to connect the programmable metasurface to provide the coded signals from field programmable gate array (FPGA) when controlling the metasurface at a long distance, which is complicated and inconvenient. Here, we propose an infrared-controlled programmable metasurface that can be programmed remotely. The infrared transceiver is able to switch the coding sequences stored in the FPGA controller, thus controlling the voltage on the varactors integrated in the metasurface. Experiment is performed at microwave frequencies, and the measured results verify that the scattering beams of the metasurface sample can be changed remotely by using infrared ray. The proposed infrared-controlled programmable metasurface opens up avenues for constructing a new class of remotely-tuning dynamic metasurfaces. 展开更多
关键词 Infrared-controlled programmable metasurfaces Remotely-tuning beam splitting beam scanning
原文传递
Independent phase manipulation of co-and cross-polarizations with all-dielectric metasurface 被引量:7
10
作者 Haoyu Wang Zhiyu Zhang +3 位作者 Kun Zhao Wen Liu Pei Wang Yonghua Lu 《Chinese Optics Letters》 SCIE EI CAS CSCD 2021年第5期100-105,共6页
Phase carried by two orthogonal polarizations can be manipulated independently by controlling both the geometric size and orientation of the dielectric nanopost.With this characteristic,we demonstrate a novel multifun... Phase carried by two orthogonal polarizations can be manipulated independently by controlling both the geometric size and orientation of the dielectric nanopost.With this characteristic,we demonstrate a novel multifunctional metasurface,which converts part of the incident linearly polarized light into its cross-polarization and encodes the phase of the two orthogonal polarizations independently.A beam splitter and a bifocal metalens were realized in a single-layer dielectric metasurface by this approach.We fabricated the bifocal metalens and demonstrated that two focal spots in orthogonal polarizations can be separated transversely or longitudinally at will.The proposed approach shows a new route to design multifunctional metasurfaces with various applications in holography and three-dimensional display. 展开更多
关键词 multifunctional metasurface polarization conversion beam splitting bifocal metalens
原文传递
Thermodynamic analysis on medium-high temperature solar thermal systems with selective coatings 被引量:4
11
作者 HU Peng LIU Yang +1 位作者 ZHANG Qian CHEN ZeShao 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第12期3137-3143,共7页
Thermodynamics analysis was carried out for solar thermal receivers with different selective coatings.The relation between the energy conversion efficiency of a medium-high temperature solar thermal system,the spectra... Thermodynamics analysis was carried out for solar thermal receivers with different selective coatings.The relation between the energy conversion efficiency of a medium-high temperature solar thermal system,the spectral properties of selective coating and the operating temperature of the receiver were discussed.Furthermore,the relation between the optimum operating temperatures,the exergy efficiencies and the incident solar flux were analyzed for the traditional concentrating system and concentrating beam splitting system,respectively.According to the analysis results for the thermal receiver with blackbody surface and selective coatings,the optimum cutoff wavelength was obtained for the ideal selective coating.An analysis method for the optimum operating temperature calculation was developed for thermal receivers with selective coating.The optimum operating temperature for an actual selective coating was analyzed on the basis of the proposed theory. 展开更多
关键词 solar energy thermal receiver selective coating thermodynamic analysis concentrating beam splitting solar system
原文传递
Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system 被引量:2
12
作者 Yongliang Li Sanjeeva Witharana +3 位作者 Hui Cao Mathieu Lasfargues Yun Huang Yulong Ding 《Particuology》 SCIE EI CAS CSCD 2014年第4期39-44,共6页
This paper proposes a power system concept that integrates photovoltaic (PV) and thermoelectric (TE) technologies to harvest solar energy from a wide spectral range. By introduction of the 'spectrum beam splittin... This paper proposes a power system concept that integrates photovoltaic (PV) and thermoelectric (TE) technologies to harvest solar energy from a wide spectral range. By introduction of the 'spectrum beam splitting' technique, short wavelength solar radiation is converted directly into electricity in the PV cells, while the long wavelength segment of the spectrum is used to produce moderate to high temperature thermal energy, which then generates electricity in the TE device. To overcome the intermittent nature of solar radiation, the system is also coupled to a thermal energy storage unit. A systematic analysis of the integrated system is carried out, encompassing the system configuration, material properties, thermal management, and energy storage aspects. We have also attempted to optimize the integrated system. The results indicate that the system configuration and optimization are the most important factors for high overall efficiency. 展开更多
关键词 Solar power Photovoltaic panel Spectrum beam splitting Thermoelectric generator Energy storage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部