A splitting iteration method is proposed to compute double X0-breaking bifurcation points. The method will reduce the computational work and storage, it converges linearly with an adjustable speed. Numerical computat...A splitting iteration method is proposed to compute double X0-breaking bifurcation points. The method will reduce the computational work and storage, it converges linearly with an adjustable speed. Numerical computation shows the effectiveness of splitting iteration method.展开更多
In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system...In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system Ax = f. The convergence of the resulting method is proved when the spectrum of the matrix A lie in the right upper (or lower) part of the complex plane. We also derive an upper bound of the spectral radius of the HSS iteration matrix, and a estimated optimal parameter a (denoted by a^st) of this upper bound is presented. Numerical experiments on two modified model problems show that the HSS method with a est has a smaller spectral radius than that with the real parameter which minimizes the corresponding upper hound. In particular, for the 'dominant' imaginary part of the matrix A, this improvement is considerable. We also test the GMRES method preconditioned by the HSS preconditioning matrix with our parameter a est.展开更多
A fast compound direct iterative algorithm for solving transient line contact elastohydrodynamic lubrication (EHL) problems is presented. First, by introducing a special matrix splitting iteration method into the tr...A fast compound direct iterative algorithm for solving transient line contact elastohydrodynamic lubrication (EHL) problems is presented. First, by introducing a special matrix splitting iteration method into the traditional compound direct iterative method, the full matrices for the linear systems of equations are transformed into sparse banded ones with any half-bandwidth; then, an extended Thomas method which can solve banded linear systems with any half-bandwidth is derived to accelerate the computing speed. Through the above two steps, the computational complexity of each iteration is reduced approximately from O(N^3/3) to O(β^2N), where N is the total number of nodes, and β is the half-bandwidth. Two kinds of numerical results of transient EHL line contact problems under sinusoidal excitation or pure normal approach process are obtained. The results demonstrate that the new algorithm increases computing speed several times more than the traditional compound direct iterative method with the same numerical precision. Also the results show that the new algorithm can get the best computing speed and robustness when the ratio, half-bandwidth to total number of nodes, is about 7.5% 10.0% in moderate load cases.展开更多
文摘A splitting iteration method is proposed to compute double X0-breaking bifurcation points. The method will reduce the computational work and storage, it converges linearly with an adjustable speed. Numerical computation shows the effectiveness of splitting iteration method.
文摘In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system Ax = f. The convergence of the resulting method is proved when the spectrum of the matrix A lie in the right upper (or lower) part of the complex plane. We also derive an upper bound of the spectral radius of the HSS iteration matrix, and a estimated optimal parameter a (denoted by a^st) of this upper bound is presented. Numerical experiments on two modified model problems show that the HSS method with a est has a smaller spectral radius than that with the real parameter which minimizes the corresponding upper hound. In particular, for the 'dominant' imaginary part of the matrix A, this improvement is considerable. We also test the GMRES method preconditioned by the HSS preconditioning matrix with our parameter a est.
文摘A fast compound direct iterative algorithm for solving transient line contact elastohydrodynamic lubrication (EHL) problems is presented. First, by introducing a special matrix splitting iteration method into the traditional compound direct iterative method, the full matrices for the linear systems of equations are transformed into sparse banded ones with any half-bandwidth; then, an extended Thomas method which can solve banded linear systems with any half-bandwidth is derived to accelerate the computing speed. Through the above two steps, the computational complexity of each iteration is reduced approximately from O(N^3/3) to O(β^2N), where N is the total number of nodes, and β is the half-bandwidth. Two kinds of numerical results of transient EHL line contact problems under sinusoidal excitation or pure normal approach process are obtained. The results demonstrate that the new algorithm increases computing speed several times more than the traditional compound direct iterative method with the same numerical precision. Also the results show that the new algorithm can get the best computing speed and robustness when the ratio, half-bandwidth to total number of nodes, is about 7.5% 10.0% in moderate load cases.