This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four lo...This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four loading rates(0.002,0.02,0.2,and 2 mm/s)on specimens with four steel fiber contents(0%,0.6%,1.2%,and 1.8%)subjected to 0 and 50 freeze-thaw cycles.The dynamic splitting tensile damage characteristics were evaluated using acoustic emission(AE)parameter analysis and Fourier transform spectral analysis.The results quantified using the freeze-thaw damage factor defined in this paper indicate that the degree of damage to SFRC caused by freeze-thaw cycling was aggravated with increasing loading rate but mitigated by increasing fiber content.The percentage of low-frequency AE signals produced by the SFRC specimens during loading decreased with increasing loading rate,whereas that of high-frequency AE signals increased.Freeze-thaw action had little effect on the crack types observed during the early and middle stages of the loading process;however,the primary crack type observed during the later stage of loading changed from shear to tensile after the SFRC specimens were subjected to freeze-thaw cycling.Notably,the results of this study indicate that the freeze-thaw damage to SFRC reduces AE signal activity at low frequencies.展开更多
Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more...Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsl^j bar systems, which include both split Hopkinson pressure bar (SHPB) and split Hopkinson tension bar (SHTB) systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of tech- niques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques). Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT), laser gap gauge (LGG), digital image corre- lation (DIC), Moir~ method, caustics method, photoelastic coating method, dynamic infrared thermog- raphy) are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests), dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity), and dy- namic techniques for studying the influences of temperature and pore water.展开更多
文摘This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four loading rates(0.002,0.02,0.2,and 2 mm/s)on specimens with four steel fiber contents(0%,0.6%,1.2%,and 1.8%)subjected to 0 and 50 freeze-thaw cycles.The dynamic splitting tensile damage characteristics were evaluated using acoustic emission(AE)parameter analysis and Fourier transform spectral analysis.The results quantified using the freeze-thaw damage factor defined in this paper indicate that the degree of damage to SFRC caused by freeze-thaw cycling was aggravated with increasing loading rate but mitigated by increasing fiber content.The percentage of low-frequency AE signals produced by the SFRC specimens during loading decreased with increasing loading rate,whereas that of high-frequency AE signals increased.Freeze-thaw action had little effect on the crack types observed during the early and middle stages of the loading process;however,the primary crack type observed during the later stage of loading changed from shear to tensile after the SFRC specimens were subjected to freeze-thaw cycling.Notably,the results of this study indicate that the freeze-thaw damage to SFRC reduces AE signal activity at low frequencies.
文摘Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsl^j bar systems, which include both split Hopkinson pressure bar (SHPB) and split Hopkinson tension bar (SHTB) systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of tech- niques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques). Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT), laser gap gauge (LGG), digital image corre- lation (DIC), Moir~ method, caustics method, photoelastic coating method, dynamic infrared thermog- raphy) are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests), dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity), and dy- namic techniques for studying the influences of temperature and pore water.