In order to uncover the intrinsic reasons for spontaneous combustion of sulfide minerals,representative samples were collected from typical metal mines to carry out the mechanical activation experiment.The structures ...In order to uncover the intrinsic reasons for spontaneous combustion of sulfide minerals,representative samples were collected from typical metal mines to carry out the mechanical activation experiment.The structures and heat behaviors of activated samples were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD) analysis,and simultaneous thermal analysis(STA).It is found that the sulfide minerals after mechanical activation show many changes with increased specific surface areas,aggregation phenomenon,decreased diffraction peak intensity,broadened diffraction peak,declined initial temperatures of heat release and self-ignition points.A new theory for explaining the spontaneous combustion of sulfide minerals is put forward:the chemical reaction activity of sulfide minerals is heightened by all kinds of mechanical forces during the mining,and the spontaneous combustion takes place finally under proper environment.展开更多
In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy ...In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.展开更多
By solving steady model of air flow diffusion and chemical reaction in loose coal, distribution of oxygen concentration and flow velocity magnitude were obtained. Compared the simulating results with critic value as w...By solving steady model of air flow diffusion and chemical reaction in loose coal, distribution of oxygen concentration and flow velocity magnitude were obtained. Compared the simulating results with critic value as well as duration of spontaneous combustion from large-scale spontaneous combustion experiment, 'three zones' of spontaneous combustion were partitioned and mining conditions to avoid spontaneous combustion were obtained. The above method was employed to partition 'three zones' in gob of fully mechanized top-coal caving long wall face and got fairly good result. Calculation of the above method is much smaller than simulating the whole process of coal spontaneous combustion, but the prediction precision can satisfy the demand of predicting and extinguishing spontaneous combustion in mining.展开更多
A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition...A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition effect and mechanism were analyzed by scanning electron microscopy(SEM),X-ray diffraction(XRD), thermal performance analysis, in-situ diffuse reflectance infrared spectroscopy and temperature-programmed experiment. The results have shown that the inhibitor containing lanthanum can play a good inhibitory role in every stage of coal oxidation. During the slow oxidation of coal samples, the inhibitor containing lanthanum ions can slow down the oxidation process of coal and increase the initial temperature of coal spontaneous combustion. At the same time, because the hydroxyl groups in LDHs are connected with-COO-groups on the coal surface through hydrogen bonds, the stability of coal is improved. With the increase of temperature, LDHs can remove interlayer water molecules and reduce the surface temperature of coal. CO release rate of coal samples decreases significantly after adding inhibitor containing lanthanum element, and the maximum inhibition rate of the inhibitor is 58.1%.展开更多
Spontaneous combustion is one of the greatest disasters in coal mines. Early recognition is important because it may be a potential inducement for other coalmine accidents. However, early recognition is difficult beca...Spontaneous combustion is one of the greatest disasters in coal mines. Early recognition is important because it may be a potential inducement for other coalmine accidents. However, early recognition is difficult because of the complexity of different coal mines. Fuzzy clustering has been proposed to incorporate the uncertainty of spontaneous combustion in coal mines and it can give a clear degree of classification of combustion. Because FCM clustering tends to become trapped in local minima, a new approach of fuzzy c-means clustering based on a genetic algorithm is there- fore proposed. Genetic algorithm is capable of locating optimal or near optimal solutions to difficult problems. It can be applied in many fields without first obtaining detailed knowledge about correlation. It is helpful in improving the effec- tiveness of fuzzy clustering in detecting spontaneous combustion. The effectiveness of the method is demonstrated by means of an experiment.展开更多
In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain ...In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain theoretically the factors affecting spontaneous coal combustion, such as rock bursts, high temperatures, high ventilation resistance, slow advancing speed and large obliquity mining. Key technologies to prevent spontaneous combustion occurring in sharply inclined seams in deep mines are pro- posed; these include pouring water, stopping leakage in upper and lower comers of the working face, choking off the goaf and cov- eting the coal. CO concentrations were controlled within two years to less than 15×10^-6 at the upper comer by applying these tech- nologies at the 1410 working face of the Huafeng coal mine. Our method has significant theoretical value and is of practical impor- tance in controlling spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines.展开更多
The high concentrations of Fe^(2+) and Mn^(2+) in acid mine drainage make it difficult and expensive to treat.It is urgent that we find a cheap and efficient adsorption material to treat Fe^(2+) and Mn^(2+).As a solid...The high concentrations of Fe^(2+) and Mn^(2+) in acid mine drainage make it difficult and expensive to treat.It is urgent that we find a cheap and efficient adsorption material to treat Fe^(2+) and Mn^(2+).As a solid waste in mining areas,coal gangue occupies a large area and pollutes the surrounding environment during the stacking process.Developing a method of resource utilization is thus a research hotspot.In this study,we modified spontaneous combustion gangue using NaOH,NaCl,and HCl by chemically modifying the minerals.We determined the optimal conditions for treating Fe^(2+) and Mn^(2+) in acid mine drainage with spontaneous combustion gangue and modified coal gangue using the single factor test method.Based on results of the static test,two dynamic test columns,column No.1(spontaneous combustion gangue)and column No.2(NaOH modified spontaneous combustion gangue),were constructed,and the repair effects of acid mine drainage were compared and analyzed using dynamic experiments.The results show that overall,NaOH modified spontaneous combustion gangue is the most efficient at removing the Fe^(2+) and Mn^(2+) in acid mine drainage.The optimal conditions for NaOH modification are an NaOH concentration of 3 mol/L,a liquid to solid ratio of 2 L/kg,and a modification time of 8 h.The overall efficiency of column No.2 at removing Fe^(2+) and Mn^(2+) from acid mine drainage is better than that of column No.1.Among them,the average removal efficiency of Fe^(2+)and Mn^(2+) from acid mine drainage in column No.2 were 97.73%and 44.82%,respectively.The above results show that NaOH modified spontaneous combustion gangue is a good adsorbent,which has application potential in wastewater remediation,as it can achieve the purpose of“treating dust with waste”.展开更多
The spontaneous combustion is a smoldering process and characterized by a slow burning speed and a long duration. Therefore, it is a hazard to coal mines. Early detection of coal mine spontaneous combustion is quite d...The spontaneous combustion is a smoldering process and characterized by a slow burning speed and a long duration. Therefore, it is a hazard to coal mines. Early detection of coal mine spontaneous combustion is quite difficult because of the complexity of different coal mines. And the traditional threshold discriminance is not suitable for spontaneous combustion detection due to the uncertainty of coalmine combustion. Restrictions of the single detection method will also affect the detection precision in the early time of spontaneous combustion. Although multiple detection methods can be adopted as a complementarity to improve the accuracy of detection, the synthesized method will in- crease the complicacy of criterion, making it difficult to estimate the combustion. To solve this problem, a fuzzy inference system based on CRI (Compositional Rule of Inference) and fuzzy reasoning method FITA (First Infer Then Aggregate) are presented. And the neural network is also developed to realize the fuzzy inference system. Finally, the effectiveness of the inference system is demonstrated bv means of an experiment.展开更多
According to the classification standard of spontaneous combustion "three zone" in gob and the analysis of aerodynamics and energy equation of relax loose coal body, the paper used the method of computer simulation ...According to the classification standard of spontaneous combustion "three zone" in gob and the analysis of aerodynamics and energy equation of relax loose coal body, the paper used the method of computer simulation analysis to get the air distribution. The paper also determined the three zone area of H2103 fully mechanized caving face in Beizao Mine.展开更多
According to spontaneous combustion propensity,the longwall gob is divided into three zones,including heat dissipation zone,self-heating zone and the choking zone.Only in the self-heating zone can temperature of coal ...According to spontaneous combustion propensity,the longwall gob is divided into three zones,including heat dissipation zone,self-heating zone and the choking zone.Only in the self-heating zone can temperature of coal rise due to oxidation.Studying the distribution of the "Three Zones" in gob is important for predicting and preventing spontaneous combustion in coalmine.In normal mining operations,temperature of coal is roughly constant.The process of mass transfer in the gob is considered to be steady.Based on mass conservation,gas species conservation,darcy's law,Ficks law of diffusion and coal oxidation 1-grade reaction rule,governing equation for air leakage intensity and species concentration are deduced.With critical value of coal spontaneous combustion and the size of longwall workface as basic dimension,a dimensionless steady coupled model of air flow diffusion and chemical reaction in loose coal of Fully Mechanized Top-Coal Caving Mining Workface(FMTCCMW) is setup.By solving the model numerically,regulation of three zones' distribution and spontaneous combustion in the gob can be obtained.The results can be easily popularized to prediction of spontaneous combustion in other coalmines' longwall gob.展开更多
Qualitative analysis plus trial and error method are still the routine to achieve ventilation pressure balancing. These methods may cause large errors in pressure balancing so that sometimes the spontaneous combustion...Qualitative analysis plus trial and error method are still the routine to achieve ventilation pressure balancing. These methods may cause large errors in pressure balancing so that sometimes the spontaneous combustion can not be extinguished effectively. This paper introduces a quantitative analysis of pressure balancing for different causes of ventilation networks and develops a computer program (SPFPB) specifically written for pressure balancing between faces and connected gobs. It allows a user to choose different metheds to meet his various needs and the underground conditions. The different balancing results are compared, and the proper locations and sizes of the control devices are recommended.展开更多
Spontaneous combustion of coal is one of the major problems in the coal mine. The fire may occur due to exogenous and endogenous causes, by which coal liberated heat to the air or heat absorbed into it. It causes loss...Spontaneous combustion of coal is one of the major problems in the coal mine. The fire may occur due to exogenous and endogenous causes, by which coal liberated heat to the air or heat absorbed into it. It causes loss of production, as well as economical or financial losses and polluted the environment. If, the heat liberated during this process is allowed to accumulate, the rate of reaction increases exponentially and there is a further rise in temperature that generates the flame and produce CO, CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>, O<sub>2</sub> etc. In addition, the heat generated within coal affected by different factors such moisture, ash, volatile matter etc. of coal. This paper deals with the oxidation and spontaneous combustion risk in Barapukuria underground longwall coal mine, Dinajpur, Bangladesh. In this study, the laboratory analyses (proximate analyses) shows the inherent and the total moisture content value is average 2.73% and 5.82% to 12.75%, respectively. It indicates that these moisture contents are moderately liable to self heating. The less ash content value (av.13.2%) shows, it is less liable to spontaneous combustion. In addition to this, the temperature and concentration of some mine gases (CO, N<sub>2</sub>, O<sub>2</sub>) were monitored to calculate the Graham’s ratio. According to Graham’s ratio, the longwall faces have high oxidation risk and medium combustion risk. Therefore, the actual control of spontaneous combustion of coal is important to save coal mine from mine fires and also provides a real opportunity to improve the financial performance of the overall organization.展开更多
The method of infrared thermography to predict the temperature of the sulfide ores has a large error. To solve this problem, the temperature of the sulfide ores is measured by thermal infrared imager and recording the...The method of infrared thermography to predict the temperature of the sulfide ores has a large error. To solve this problem, the temperature of the sulfide ores is measured by thermal infrared imager and recording thermometric instrument contrastively. The main factors, including emissivity, distance, angle and dust concentration that affect the temperature measurement precision, are analyzed. The regression equations about the individual factors and comprehensive factors are obtained by analyzing test data. The application of the regression equations improves the precision of the thermal infrared imager. The geometric information lost in traditional infrared thermometry is determined by visualization grid method and interpolation method, the relationship between the infrared imager and geometry information is established. The geometry location can be measured exactly.展开更多
In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide c...In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.展开更多
Abstract Pyrite has a significant effect on the spontaneous combustion of coal. The presence of pyrite can change the propensity of coal towards spontaneous combustion. The influences of various pyrite contents on the...Abstract Pyrite has a significant effect on the spontaneous combustion of coal. The presence of pyrite can change the propensity of coal towards spontaneous combustion. The influences of various pyrite contents on the parameters of spontaneous combustion, such as index gases, temperature and released heat etc., were investigated in this study, Coal samples with different pyrite contents (0 %, 3 %, 5 %, 7 % and 9 %) were made by mixing coal and pyrite. The oxidation experiments under temperature-programmed condition were carried out to test the release rate of gaseous oxidation products at different temperatures. Differential scanning calorimeter (DSC) was employed to measure the intensity of heat release during coal oxidation for various pyrite contents. The results indicate that pyrite can nonlinearly accelerate the process of spontaneous combustion. The coal sample with a pyrite content of 5 % has the largest CO release rate and oxygen adsorption as well. However, the coal sample with a pyrite content of ? % has the largest rate of heat flow according to the results from the DSC tests. Pyrite contents of 5 %-7 % in coal has the most significant effects on spontaneous combustion within the range of this study. The conclusions are conducive to the evaluation and control for the spontaneous combustion of coal.展开更多
Coal and coal-shales tend to undergo spontaneous combustion under favourable atmospheric conditions. Spontaneous combustion liability index and intrinsic properties of coals and coal-shales varies between (above and ...Coal and coal-shales tend to undergo spontaneous combustion under favourable atmospheric conditions. Spontaneous combustion liability index and intrinsic properties of coals and coal-shales varies between (above and below) coal seams. The spontaneous combustion liability index (obtained from the Wits-Ehac Index) and intrinsic properties (obtained from proximate, ultimate, and petrographic analysis) of fourteen samples representative of in situ coal (bituminous) and fourteen coal-shales obtained in Witbank coalfield, South Africa were experimentally studied. Comparative analysis of the relationships between the spontaneous combustion liability index and intrinsic properties of coals and coalshales were established to evaluate their effects on self-heating potential. The intrinsic properties show linear relationship with spontaneous combustion liability and therefore, identifies the factors affecting spontaneous combustion of these materials. The influence of coal-shales intrinsic properties towards spontaneous combustion liability shows higher correlation coefficients than the coals. Both coals and coal-shales show inertinite maceral as major constituents than the vitrinite and liptinite macerals, hence the reactivity of inertinite macerals may show greater influence on spontaneous combustion liability. A definite positive or negative trends exists between the intrinsic properties and spontaneous combustion liability index. This research is part of a larger project which is considering the influence of intrinsic properties of coals and coal-shales on spontaneous combustion liability.展开更多
This paper presents predictive models to determine spontaneous combustion liability of carbonaceous materials (coals and coal-shales) using statistical analysis. The intrinsic properties and spontaneous combustion l...This paper presents predictive models to determine spontaneous combustion liability of carbonaceous materials (coals and coal-shales) using statistical analysis. The intrinsic properties and spontaneous combustion liability index were determined by testing 14 coals and 14 coal-shales from Witbank coalfields, South Africa. The relationship between these intrinsic properties (obtained from proximate, ultimate and petrographic analysis) and spontaneous combustion liability indices (the Wits-Ehac Index and Wits-CT Index) were established. The influence of the intrinsic properties of coal-shales in relation to coal properties affecting spontaneous combustion has been established using a statistical method. The linear regression analysis indicates better linear relationships between some of the selected intrinsic properties and spontaneous combustion liability index and thus, identifies the major intrinsic factors affecting their liability toward spontaneous combustion. It was found that a definite positive or negative correlation coefficient exists between the intrinsic factors and spontaneous combustion liability. A set of models to predict the spontaneous combustion liability was derived. The best significant correlation along with the most appropriate model as indicated by R-squared values, the coefficient of corre- lations and standard error was used to predict the incident of spontaneous combustion.展开更多
in order to achieve a more efficient way to accurately detect the position of the fire source of spontaneous combustion underground mine, a simple fire source locating method, based on infrared scanning system which c...in order to achieve a more efficient way to accurately detect the position of the fire source of spontaneous combustion underground mine, a simple fire source locating method, based on infrared scanning system which can determine the point where the highest temperature on the surface of igniting ores occurs, was proposed. First, the differential equations that describe heat flow in ore body were presented and the relationship between the surface temperature distribution and the depth and intensity of inner fire source was established with a relatively simple heat transfer model. With the solution of equation, the expression of the relationship between the surface temperature distribution and the inner fire source was deduced and the mathematical-physical model of heat transfer process was set up. Then, with the model, visualization of fire source on the basis of MATLAB simulation platform was realized. The results show that: 1) within 10 m, when the detecting depth is less than 2 m, the temperature perturbation on ores surface can change rapidly, and then slowly; after 4 m, in contrast, it changes very little, and is even close to zero at 10 m; 2) When it is close to self-ignition duration and the detective depths are 2, 5 and 10 m, respectively, the maximum temperature differences are correspondingly 0.5, 0.04 and 0.005 ℃ in the scope of 1 m×1 m; under the same condition, the maximum temperature differences are 1.391, 0.136 and 0.018 ℃, respectively, in the scope of 2 m×2 m. Therefore, this system can be used to measure the temperature differences on the surface of ore body and determine the highest temperature point directly. Also, it is possible to determine the depth of fire source and its intensity by locating method of fire source indirectly.展开更多
Coal and coal-shale both tend to undergo spontaneous combustion under favourable atmospheric conditions. The Wits-Ehac index has been developed in South Africa since the late 1980's to test the spontaneous combust...Coal and coal-shale both tend to undergo spontaneous combustion under favourable atmospheric conditions. The Wits-Ehac index has been developed in South Africa since the late 1980's to test the spontaneous combustion liability of coal. However, in some cases, the Wits-Ehac index fails to produce tangible results when testing coal-shales. To overcome this problem, a new apparatus has been developed to test carbonaceous materials such as coal and coal-shale under chemical reactions with oxygen and an index has been obtained. This index is called the Wits-CT index. The equipment emulates the influence of oxygen adsorption on carbonaceous material for a period of 24 h without a heating system.The Wits-CT index uses the total carbon content of the sample and the temperature variations obtained from the samples during reaction with oxygen to predict the spontaneous combustion liability. Eighteen samples have been analyzed using both indices and the results are in-line. It was found that coals and coal-shales with higher values of the Wits-CT index are more liable to spontaneous combustion.Further research on different coal-shales is underway in order to establish an extensive database for coal and coal-shales, together with known incidences of self-heating.展开更多
The phenomenon of coal spontaneous combustion is one of the common hazards in coal mines and also one of the important reasons for the loss of coal in piles and mines. Based on previous researches, different types of ...The phenomenon of coal spontaneous combustion is one of the common hazards in coal mines and also one of the important reasons for the loss of coal in piles and mines. Based on previous researches, different types of coals have different spontaneous combustion characteristics. For coal loss prevention, a measure is necessary for prediction of coal spontaneous combustion. In this study, a new engineering classification system called "Coal Spontaneous Combustion Potential Index (CSCPI)" is presented based on the Fuzzy Delphi Analytic Hierarchy Process (FDAHP) approach. CSCPI classifies coals based on their spontaneous combustion capability. After recognition of the roles of the effective parameters influencing the initiation of a spontaneous combustion, a series of intrinsic, geological, and mining characteristics of coal seams are investigated. Then, the main stages of the implementation of the FDAHP method are studied and the weight of each parameter involved is calculated. A classification list of each parameter is formed, the CSCPI system is described, and the engineering classifying system is subsequently presented. In the CSCPI system, each coal seam can be rated by a number from 0 to 100; a higher number implies a greater ease for the coal spontaneous combustion capability. Based on the CSCPI system, the propensity of spontaneous combustion of coal can be classified into three potential levels: low, medium, and high. Finally, using the events of coal spontaneous combustion occurring in one of the Iranian coal mines, Eastern Alborz Coal Mines, an initial validation of the mentioned systematic approach is conducted. Comparison of the results obtained in this study illustrate a relatively good agreement.展开更多
基金Project(2012J05088) supported by the Natural Science Foundation of Fujian Province,ChinaProject(022409) supported by the School Talent Foundation of Fuzhou University,China
文摘In order to uncover the intrinsic reasons for spontaneous combustion of sulfide minerals,representative samples were collected from typical metal mines to carry out the mechanical activation experiment.The structures and heat behaviors of activated samples were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD) analysis,and simultaneous thermal analysis(STA).It is found that the sulfide minerals after mechanical activation show many changes with increased specific surface areas,aggregation phenomenon,decreased diffraction peak intensity,broadened diffraction peak,declined initial temperatures of heat release and self-ignition points.A new theory for explaining the spontaneous combustion of sulfide minerals is put forward:the chemical reaction activity of sulfide minerals is heightened by all kinds of mechanical forces during the mining,and the spontaneous combustion takes place finally under proper environment.
基金support from the National Key R&D Program of China(Grant No.2022YFC3004704)the National Natural Science Foundation of China(Grant No.52374241)the National Natural Science Foundation of China Youth Foundation(Grant No.52104230).
文摘In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.
基金Supported by Natural Science Program of Shaanxi Province Education Department (05JK261)
文摘By solving steady model of air flow diffusion and chemical reaction in loose coal, distribution of oxygen concentration and flow velocity magnitude were obtained. Compared the simulating results with critic value as well as duration of spontaneous combustion from large-scale spontaneous combustion experiment, 'three zones' of spontaneous combustion were partitioned and mining conditions to avoid spontaneous combustion were obtained. The above method was employed to partition 'three zones' in gob of fully mechanized top-coal caving long wall face and got fairly good result. Calculation of the above method is much smaller than simulating the whole process of coal spontaneous combustion, but the prediction precision can satisfy the demand of predicting and extinguishing spontaneous combustion in mining.
基金Funded by National Natural Science Foundation of China (No.52074218)。
文摘A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition effect and mechanism were analyzed by scanning electron microscopy(SEM),X-ray diffraction(XRD), thermal performance analysis, in-situ diffuse reflectance infrared spectroscopy and temperature-programmed experiment. The results have shown that the inhibitor containing lanthanum can play a good inhibitory role in every stage of coal oxidation. During the slow oxidation of coal samples, the inhibitor containing lanthanum ions can slow down the oxidation process of coal and increase the initial temperature of coal spontaneous combustion. At the same time, because the hydroxyl groups in LDHs are connected with-COO-groups on the coal surface through hydrogen bonds, the stability of coal is improved. With the increase of temperature, LDHs can remove interlayer water molecules and reduce the surface temperature of coal. CO release rate of coal samples decreases significantly after adding inhibitor containing lanthanum element, and the maximum inhibition rate of the inhibitor is 58.1%.
基金Project 20050290010 supported by the Doctoral Foundation of Chinese Education Ministry
文摘Spontaneous combustion is one of the greatest disasters in coal mines. Early recognition is important because it may be a potential inducement for other coalmine accidents. However, early recognition is difficult because of the complexity of different coal mines. Fuzzy clustering has been proposed to incorporate the uncertainty of spontaneous combustion in coal mines and it can give a clear degree of classification of combustion. Because FCM clustering tends to become trapped in local minima, a new approach of fuzzy c-means clustering based on a genetic algorithm is there- fore proposed. Genetic algorithm is capable of locating optimal or near optimal solutions to difficult problems. It can be applied in many fields without first obtaining detailed knowledge about correlation. It is helpful in improving the effec- tiveness of fuzzy clustering in detecting spontaneous combustion. The effectiveness of the method is demonstrated by means of an experiment.
基金Projects 2007B53 supported by the Foundation for National Excellent Doctoral Dissertation of ChinaBK2008123 by the Natural Science Foundation of Jiangsu Province
文摘In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain theoretically the factors affecting spontaneous coal combustion, such as rock bursts, high temperatures, high ventilation resistance, slow advancing speed and large obliquity mining. Key technologies to prevent spontaneous combustion occurring in sharply inclined seams in deep mines are pro- posed; these include pouring water, stopping leakage in upper and lower comers of the working face, choking off the goaf and cov- eting the coal. CO concentrations were controlled within two years to less than 15×10^-6 at the upper comer by applying these tech- nologies at the 1410 working face of the Huafeng coal mine. Our method has significant theoretical value and is of practical impor- tance in controlling spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines.
基金This work was supported by the National Natural Science Foundation of China(Nos.51304114,41672247)the Scientific Research Fund of the Liaoning Provincial Education Department(No.LJ2017FAL016).
文摘The high concentrations of Fe^(2+) and Mn^(2+) in acid mine drainage make it difficult and expensive to treat.It is urgent that we find a cheap and efficient adsorption material to treat Fe^(2+) and Mn^(2+).As a solid waste in mining areas,coal gangue occupies a large area and pollutes the surrounding environment during the stacking process.Developing a method of resource utilization is thus a research hotspot.In this study,we modified spontaneous combustion gangue using NaOH,NaCl,and HCl by chemically modifying the minerals.We determined the optimal conditions for treating Fe^(2+) and Mn^(2+) in acid mine drainage with spontaneous combustion gangue and modified coal gangue using the single factor test method.Based on results of the static test,two dynamic test columns,column No.1(spontaneous combustion gangue)and column No.2(NaOH modified spontaneous combustion gangue),were constructed,and the repair effects of acid mine drainage were compared and analyzed using dynamic experiments.The results show that overall,NaOH modified spontaneous combustion gangue is the most efficient at removing the Fe^(2+) and Mn^(2+) in acid mine drainage.The optimal conditions for NaOH modification are an NaOH concentration of 3 mol/L,a liquid to solid ratio of 2 L/kg,and a modification time of 8 h.The overall efficiency of column No.2 at removing Fe^(2+) and Mn^(2+) from acid mine drainage is better than that of column No.1.Among them,the average removal efficiency of Fe^(2+)and Mn^(2+) from acid mine drainage in column No.2 were 97.73%and 44.82%,respectively.The above results show that NaOH modified spontaneous combustion gangue is a good adsorbent,which has application potential in wastewater remediation,as it can achieve the purpose of“treating dust with waste”.
基金Project 20050290010 supported by the Doctoral Foundation of Chinese Education Ministry and 2005AA133070 by National 863 Program for High Technique Research Development
文摘The spontaneous combustion is a smoldering process and characterized by a slow burning speed and a long duration. Therefore, it is a hazard to coal mines. Early detection of coal mine spontaneous combustion is quite difficult because of the complexity of different coal mines. And the traditional threshold discriminance is not suitable for spontaneous combustion detection due to the uncertainty of coalmine combustion. Restrictions of the single detection method will also affect the detection precision in the early time of spontaneous combustion. Although multiple detection methods can be adopted as a complementarity to improve the accuracy of detection, the synthesized method will in- crease the complicacy of criterion, making it difficult to estimate the combustion. To solve this problem, a fuzzy inference system based on CRI (Compositional Rule of Inference) and fuzzy reasoning method FITA (First Infer Then Aggregate) are presented. And the neural network is also developed to realize the fuzzy inference system. Finally, the effectiveness of the inference system is demonstrated bv means of an experiment.
基金Supported by the National Natural Science Foundation of China(50534080)
文摘According to the classification standard of spontaneous combustion "three zone" in gob and the analysis of aerodynamics and energy equation of relax loose coal body, the paper used the method of computer simulation analysis to get the air distribution. The paper also determined the three zone area of H2103 fully mechanized caving face in Beizao Mine.
基金Supported by the National Natural Science Foundatin of China(10972178)
文摘According to spontaneous combustion propensity,the longwall gob is divided into three zones,including heat dissipation zone,self-heating zone and the choking zone.Only in the self-heating zone can temperature of coal rise due to oxidation.Studying the distribution of the "Three Zones" in gob is important for predicting and preventing spontaneous combustion in coalmine.In normal mining operations,temperature of coal is roughly constant.The process of mass transfer in the gob is considered to be steady.Based on mass conservation,gas species conservation,darcy's law,Ficks law of diffusion and coal oxidation 1-grade reaction rule,governing equation for air leakage intensity and species concentration are deduced.With critical value of coal spontaneous combustion and the size of longwall workface as basic dimension,a dimensionless steady coupled model of air flow diffusion and chemical reaction in loose coal of Fully Mechanized Top-Coal Caving Mining Workface(FMTCCMW) is setup.By solving the model numerically,regulation of three zones' distribution and spontaneous combustion in the gob can be obtained.The results can be easily popularized to prediction of spontaneous combustion in other coalmines' longwall gob.
文摘Qualitative analysis plus trial and error method are still the routine to achieve ventilation pressure balancing. These methods may cause large errors in pressure balancing so that sometimes the spontaneous combustion can not be extinguished effectively. This paper introduces a quantitative analysis of pressure balancing for different causes of ventilation networks and develops a computer program (SPFPB) specifically written for pressure balancing between faces and connected gobs. It allows a user to choose different metheds to meet his various needs and the underground conditions. The different balancing results are compared, and the proper locations and sizes of the control devices are recommended.
文摘Spontaneous combustion of coal is one of the major problems in the coal mine. The fire may occur due to exogenous and endogenous causes, by which coal liberated heat to the air or heat absorbed into it. It causes loss of production, as well as economical or financial losses and polluted the environment. If, the heat liberated during this process is allowed to accumulate, the rate of reaction increases exponentially and there is a further rise in temperature that generates the flame and produce CO, CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>, O<sub>2</sub> etc. In addition, the heat generated within coal affected by different factors such moisture, ash, volatile matter etc. of coal. This paper deals with the oxidation and spontaneous combustion risk in Barapukuria underground longwall coal mine, Dinajpur, Bangladesh. In this study, the laboratory analyses (proximate analyses) shows the inherent and the total moisture content value is average 2.73% and 5.82% to 12.75%, respectively. It indicates that these moisture contents are moderately liable to self heating. The less ash content value (av.13.2%) shows, it is less liable to spontaneous combustion. In addition to this, the temperature and concentration of some mine gases (CO, N<sub>2</sub>, O<sub>2</sub>) were monitored to calculate the Graham’s ratio. According to Graham’s ratio, the longwall faces have high oxidation risk and medium combustion risk. Therefore, the actual control of spontaneous combustion of coal is important to save coal mine from mine fires and also provides a real opportunity to improve the financial performance of the overall organization.
基金Project (51074181) supported by the National Natural Science Foundation of ChinaProject (2010ssxt241) supported by Precious Dissertation Innovation Foundation of Central South University, China
文摘The method of infrared thermography to predict the temperature of the sulfide ores has a large error. To solve this problem, the temperature of the sulfide ores is measured by thermal infrared imager and recording thermometric instrument contrastively. The main factors, including emissivity, distance, angle and dust concentration that affect the temperature measurement precision, are analyzed. The regression equations about the individual factors and comprehensive factors are obtained by analyzing test data. The application of the regression equations improves the precision of the thermal infrared imager. The geometric information lost in traditional infrared thermometry is determined by visualization grid method and interpolation method, the relationship between the infrared imager and geometry information is established. The geometry location can be measured exactly.
基金Project (2006BAK04B03) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of ChinaProject (kjdb200902-7) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology Review, China+1 种基金Project (1960-71131100023) supported by Postgraduate Dissertation Innovation Foundation of Central South University, ChinaProject (ZKJ2009008) supported by Precious Apparatus Opening Center Foundation of Central South University, China
文摘In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.
文摘Abstract Pyrite has a significant effect on the spontaneous combustion of coal. The presence of pyrite can change the propensity of coal towards spontaneous combustion. The influences of various pyrite contents on the parameters of spontaneous combustion, such as index gases, temperature and released heat etc., were investigated in this study, Coal samples with different pyrite contents (0 %, 3 %, 5 %, 7 % and 9 %) were made by mixing coal and pyrite. The oxidation experiments under temperature-programmed condition were carried out to test the release rate of gaseous oxidation products at different temperatures. Differential scanning calorimeter (DSC) was employed to measure the intensity of heat release during coal oxidation for various pyrite contents. The results indicate that pyrite can nonlinearly accelerate the process of spontaneous combustion. The coal sample with a pyrite content of 5 % has the largest CO release rate and oxygen adsorption as well. However, the coal sample with a pyrite content of ? % has the largest rate of heat flow according to the results from the DSC tests. Pyrite contents of 5 %-7 % in coal has the most significant effects on spontaneous combustion within the range of this study. The conclusions are conducive to the evaluation and control for the spontaneous combustion of coal.
文摘Coal and coal-shales tend to undergo spontaneous combustion under favourable atmospheric conditions. Spontaneous combustion liability index and intrinsic properties of coals and coal-shales varies between (above and below) coal seams. The spontaneous combustion liability index (obtained from the Wits-Ehac Index) and intrinsic properties (obtained from proximate, ultimate, and petrographic analysis) of fourteen samples representative of in situ coal (bituminous) and fourteen coal-shales obtained in Witbank coalfield, South Africa were experimentally studied. Comparative analysis of the relationships between the spontaneous combustion liability index and intrinsic properties of coals and coalshales were established to evaluate their effects on self-heating potential. The intrinsic properties show linear relationship with spontaneous combustion liability and therefore, identifies the factors affecting spontaneous combustion of these materials. The influence of coal-shales intrinsic properties towards spontaneous combustion liability shows higher correlation coefficients than the coals. Both coals and coal-shales show inertinite maceral as major constituents than the vitrinite and liptinite macerals, hence the reactivity of inertinite macerals may show greater influence on spontaneous combustion liability. A definite positive or negative trends exists between the intrinsic properties and spontaneous combustion liability index. This research is part of a larger project which is considering the influence of intrinsic properties of coals and coal-shales on spontaneous combustion liability.
文摘This paper presents predictive models to determine spontaneous combustion liability of carbonaceous materials (coals and coal-shales) using statistical analysis. The intrinsic properties and spontaneous combustion liability index were determined by testing 14 coals and 14 coal-shales from Witbank coalfields, South Africa. The relationship between these intrinsic properties (obtained from proximate, ultimate and petrographic analysis) and spontaneous combustion liability indices (the Wits-Ehac Index and Wits-CT Index) were established. The influence of the intrinsic properties of coal-shales in relation to coal properties affecting spontaneous combustion has been established using a statistical method. The linear regression analysis indicates better linear relationships between some of the selected intrinsic properties and spontaneous combustion liability index and thus, identifies the major intrinsic factors affecting their liability toward spontaneous combustion. It was found that a definite positive or negative correlation coefficient exists between the intrinsic factors and spontaneous combustion liability. A set of models to predict the spontaneous combustion liability was derived. The best significant correlation along with the most appropriate model as indicated by R-squared values, the coefficient of corre- lations and standard error was used to predict the incident of spontaneous combustion.
基金Project(2006BAK04B03) supported by the National Basic Research Program of ChinaProject(CX2009B053) supported by Innovation Foundation for Postgraduate Students of Hunan Province,ChinaProject(2009ybfz08) supported by the Doctoral Dissertation of Central South University,China
文摘in order to achieve a more efficient way to accurately detect the position of the fire source of spontaneous combustion underground mine, a simple fire source locating method, based on infrared scanning system which can determine the point where the highest temperature on the surface of igniting ores occurs, was proposed. First, the differential equations that describe heat flow in ore body were presented and the relationship between the surface temperature distribution and the depth and intensity of inner fire source was established with a relatively simple heat transfer model. With the solution of equation, the expression of the relationship between the surface temperature distribution and the inner fire source was deduced and the mathematical-physical model of heat transfer process was set up. Then, with the model, visualization of fire source on the basis of MATLAB simulation platform was realized. The results show that: 1) within 10 m, when the detecting depth is less than 2 m, the temperature perturbation on ores surface can change rapidly, and then slowly; after 4 m, in contrast, it changes very little, and is even close to zero at 10 m; 2) When it is close to self-ignition duration and the detective depths are 2, 5 and 10 m, respectively, the maximum temperature differences are correspondingly 0.5, 0.04 and 0.005 ℃ in the scope of 1 m×1 m; under the same condition, the maximum temperature differences are 1.391, 0.136 and 0.018 ℃, respectively, in the scope of 2 m×2 m. Therefore, this system can be used to measure the temperature differences on the surface of ore body and determine the highest temperature point directly. Also, it is possible to determine the depth of fire source and its intensity by locating method of fire source indirectly.
基金conducted in the context of coal-shale spontaneous combustion in the eMalahleni coalfields, South Africa was financially sponsored by Coaltech
文摘Coal and coal-shale both tend to undergo spontaneous combustion under favourable atmospheric conditions. The Wits-Ehac index has been developed in South Africa since the late 1980's to test the spontaneous combustion liability of coal. However, in some cases, the Wits-Ehac index fails to produce tangible results when testing coal-shales. To overcome this problem, a new apparatus has been developed to test carbonaceous materials such as coal and coal-shale under chemical reactions with oxygen and an index has been obtained. This index is called the Wits-CT index. The equipment emulates the influence of oxygen adsorption on carbonaceous material for a period of 24 h without a heating system.The Wits-CT index uses the total carbon content of the sample and the temperature variations obtained from the samples during reaction with oxygen to predict the spontaneous combustion liability. Eighteen samples have been analyzed using both indices and the results are in-line. It was found that coals and coal-shales with higher values of the Wits-CT index are more liable to spontaneous combustion.Further research on different coal-shales is underway in order to establish an extensive database for coal and coal-shales, together with known incidences of self-heating.
文摘The phenomenon of coal spontaneous combustion is one of the common hazards in coal mines and also one of the important reasons for the loss of coal in piles and mines. Based on previous researches, different types of coals have different spontaneous combustion characteristics. For coal loss prevention, a measure is necessary for prediction of coal spontaneous combustion. In this study, a new engineering classification system called "Coal Spontaneous Combustion Potential Index (CSCPI)" is presented based on the Fuzzy Delphi Analytic Hierarchy Process (FDAHP) approach. CSCPI classifies coals based on their spontaneous combustion capability. After recognition of the roles of the effective parameters influencing the initiation of a spontaneous combustion, a series of intrinsic, geological, and mining characteristics of coal seams are investigated. Then, the main stages of the implementation of the FDAHP method are studied and the weight of each parameter involved is calculated. A classification list of each parameter is formed, the CSCPI system is described, and the engineering classifying system is subsequently presented. In the CSCPI system, each coal seam can be rated by a number from 0 to 100; a higher number implies a greater ease for the coal spontaneous combustion capability. Based on the CSCPI system, the propensity of spontaneous combustion of coal can be classified into three potential levels: low, medium, and high. Finally, using the events of coal spontaneous combustion occurring in one of the Iranian coal mines, Eastern Alborz Coal Mines, an initial validation of the mentioned systematic approach is conducted. Comparison of the results obtained in this study illustrate a relatively good agreement.