The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current wor...The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current workhorse technique for preparing photon pairs involves performing spon-taneous parametric down conversion(SPDC)in bulk nonlinear crystals.However,the current power consumption and cost of preparing entangled photon-pair sources are relatively high,pos-ing challenges to their integration and scalability.In this paper,we propose a low-power system model for the quantum entan-gled photon-pair source based on SPDC theory and phase matching technology.This model allows us to analyze the per-formance of each module and the influence of component cha-racteristics on the overall system.In our experimental setup,we utilize a 5 mW laser diode and a typical type-II barium metabo-rate(BBO)crystal to prepare an entangled photon-pair source.The experimental results are in excellent agreement with the model,indicating a significant step towards achieving the goal of low-power and low-cost entangled photon-pair sources.This achievement not only contributes to the practical application of quantum entanglement lighting,but also paves the way for the widespread adoption of optical quantum systems in the future.展开更多
Hardy's theorem on nonlocality has been verified by a series of experiments with two-qubit entangled pure states.However,in this paper we demonstrate the experimental test of the theorem by using the two-photon entan...Hardy's theorem on nonlocality has been verified by a series of experiments with two-qubit entangled pure states.However,in this paper we demonstrate the experimental test of the theorem by using the two-photon entangled mixed states.We first investigate the generic logic in Hardy's proof of nonlocality,which can be applied for arbitrary two-qubit mixed polarization entangled states and can be reduced naturally to the well-known logic tested successfully by the previous pure state experiments.Then,the optimized violations of locality for various experimental parameters are delivered by the numerical method.Finally,the logic argued above for testing Hardy's theorem on nonlocality is demonstrated experimentally by using the mixed entangled-photon pairs generated via pumping two type-I BBO crystals.Our experimental results shows that Hardy's proof of nonlocality can also be verified with two-qubit polarization entangled mixed states,with a violation of about 3.4 standard deviations.展开更多
We present a theory for quantum interference of four photons generated by spontaneous parametric downconversion. Detailed investigation of the dependence of fourfold coincidence count rate on time delay between the in...We present a theory for quantum interference of four photons generated by spontaneous parametric downconversion. Detailed investigation of the dependence of fourfold coincidence count rate on time delay between the incident and the reflective pump laser pulses is carried out. Gaussian type dependence is found, and good agreement between our theoretical results and experimental data reported in the literature is achieved.展开更多
Light-carrying orbital angular momentum(OAM)has great potential in enhancing the information channel capacity in both classical and quantum optical communications.Long distance optical communication requires the wavel...Light-carrying orbital angular momentum(OAM)has great potential in enhancing the information channel capacity in both classical and quantum optical communications.Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows,but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths,so a quantum interface to bridge the wavelength gap is necessary.So far,such an interface for OAM-carried light has not been realized yet.Here,we report the first experimental realization of a quantum interface for a heralded single photon carrying OAM using a nonlinear crystal in an optical cavity.The spatial structures of input and output photons exhibit strong similarity.More importantly,single-photon coherence is preserved during up-conversion as demonstrated.展开更多
We present a theoretical investigation,based on the tight-binding Hamiltonian,of efficient second-and third-order nonlinear optical processes in the lattice-matched undoped(GaP)N/(Si 2)M short-period superlattice that...We present a theoretical investigation,based on the tight-binding Hamiltonian,of efficient second-and third-order nonlinear optical processes in the lattice-matched undoped(GaP)N/(Si 2)M short-period superlattice that is waveguide-integrated in a microring resonator on an opto-electronic chip.The nonlinear superlattice structures are sit-uated on the optically pumped input area of a heterogeneous“XOI”chip based on silicon.The spectra ofχ(2)zzz(2ω,ω,ω),χ(2)xzx(2ω,ω,ω),χ(3)xxxx(3ω,ω,ω,ω)and the Kerr refractive index(n 2),have been simu-lated as a function of the number of the atomic monolayers for“non-relaxed”heterointerfaces;These nonlinearities are induced by transi-tions between valence and conduction bands.The large obtained val-ues make the(GaP)N/(Si 2)M short-period superlattice a good can-didate for future high-performance XOI photonic integrated chips that may include Si 3 N 4 or SiC or AlGaAs or Si.Near or at the 810-nm and 1550-nm wavelengths,we have made detailed calculations of the efficiency of second-and third-harmonic generation as well as the performances of entangled photon-pair quantum sources that are based upon spontaneous parametric down conversion and sponta-neous four-wave mixing.The results indicate that the(GaP)N/(Si 2)M short-period superlattice is competitive with present technologies and is practical for classical and quantum applications.展开更多
文摘The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current workhorse technique for preparing photon pairs involves performing spon-taneous parametric down conversion(SPDC)in bulk nonlinear crystals.However,the current power consumption and cost of preparing entangled photon-pair sources are relatively high,pos-ing challenges to their integration and scalability.In this paper,we propose a low-power system model for the quantum entan-gled photon-pair source based on SPDC theory and phase matching technology.This model allows us to analyze the per-formance of each module and the influence of component cha-racteristics on the overall system.In our experimental setup,we utilize a 5 mW laser diode and a typical type-II barium metabo-rate(BBO)crystal to prepare an entangled photon-pair source.The experimental results are in excellent agreement with the model,indicating a significant step towards achieving the goal of low-power and low-cost entangled photon-pair sources.This achievement not only contributes to the practical application of quantum entanglement lighting,but also paves the way for the widespread adoption of optical quantum systems in the future.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61308008 and U1330201)
文摘Hardy's theorem on nonlocality has been verified by a series of experiments with two-qubit entangled pure states.However,in this paper we demonstrate the experimental test of the theorem by using the two-photon entangled mixed states.We first investigate the generic logic in Hardy's proof of nonlocality,which can be applied for arbitrary two-qubit mixed polarization entangled states and can be reduced naturally to the well-known logic tested successfully by the previous pure state experiments.Then,the optimized violations of locality for various experimental parameters are delivered by the numerical method.Finally,the logic argued above for testing Hardy's theorem on nonlocality is demonstrated experimentally by using the mixed entangled-photon pairs generated via pumping two type-I BBO crystals.Our experimental results shows that Hardy's proof of nonlocality can also be verified with two-qubit polarization entangled mixed states,with a violation of about 3.4 standard deviations.
文摘We present a theory for quantum interference of four photons generated by spontaneous parametric downconversion. Detailed investigation of the dependence of fourfold coincidence count rate on time delay between the incident and the reflective pump laser pulses is carried out. Gaussian type dependence is found, and good agreement between our theoretical results and experimental data reported in the literature is achieved.
基金supported by the National Fundamental Research Program of China(2011CBA00200)the National Natural Science Foundation of China(11174271,61275115,and 61435011)the Innovation Fund from the Chinese Academy of Sciences.
文摘Light-carrying orbital angular momentum(OAM)has great potential in enhancing the information channel capacity in both classical and quantum optical communications.Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows,but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths,so a quantum interface to bridge the wavelength gap is necessary.So far,such an interface for OAM-carried light has not been realized yet.Here,we report the first experimental realization of a quantum interface for a heralded single photon carrying OAM using a nonlinear crystal in an optical cavity.The spatial structures of input and output photons exhibit strong similarity.More importantly,single-photon coherence is preserved during up-conversion as demonstrated.
基金The work of Richard Soref is supported by the Air Force Office of Scientific Research under Grant FA9550-21-1-0347.
文摘We present a theoretical investigation,based on the tight-binding Hamiltonian,of efficient second-and third-order nonlinear optical processes in the lattice-matched undoped(GaP)N/(Si 2)M short-period superlattice that is waveguide-integrated in a microring resonator on an opto-electronic chip.The nonlinear superlattice structures are sit-uated on the optically pumped input area of a heterogeneous“XOI”chip based on silicon.The spectra ofχ(2)zzz(2ω,ω,ω),χ(2)xzx(2ω,ω,ω),χ(3)xxxx(3ω,ω,ω,ω)and the Kerr refractive index(n 2),have been simu-lated as a function of the number of the atomic monolayers for“non-relaxed”heterointerfaces;These nonlinearities are induced by transi-tions between valence and conduction bands.The large obtained val-ues make the(GaP)N/(Si 2)M short-period superlattice a good can-didate for future high-performance XOI photonic integrated chips that may include Si 3 N 4 or SiC or AlGaAs or Si.Near or at the 810-nm and 1550-nm wavelengths,we have made detailed calculations of the efficiency of second-and third-harmonic generation as well as the performances of entangled photon-pair quantum sources that are based upon spontaneous parametric down conversion and sponta-neous four-wave mixing.The results indicate that the(GaP)N/(Si 2)M short-period superlattice is competitive with present technologies and is practical for classical and quantum applications.