Numerical simulation study is conducted for a pressurized spouted fluidized bed coal carbonizer, in which hydrodynamics of pressurized spouted fluidized bed, chemical reactions and energy balance are taken into accoun...Numerical simulation study is conducted for a pressurized spouted fluidized bed coal carbonizer, in which hydrodynamics of pressurized spouted fluidized bed, chemical reactions and energy balance are taken into account. The effect of operating conditions such as bed pressure, air and steam mass flow ratio, temperature on product compositions in the bed is investigated. According to the calculated results, bed pressure and bed temperature have the key effects on coal semi gasification.展开更多
In order to grasp the particle flow characteristics and energy consumption of industrial fluidized spouted beds,we conduct numerical simulations on the basis of a Computational Particle Fluid Dynamics(CPFD)approach.In...In order to grasp the particle flow characteristics and energy consumption of industrial fluidized spouted beds,we conduct numerical simulations on the basis of a Computational Particle Fluid Dynamics(CPFD)approach.In particular,the traction model of Wen-Yu-Ergun is used and different inlet conditions are considered.Using a low-speed fluidizing gas,the flow state of the particles is better and the amount of particles accumulated at the bottom of the bed wall becomes smaller.For the same air intake,the energy loss of a circular nozzle is larger than that of a square nozzle.展开更多
On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for m...On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for making syngas via catalytic partial oxidation (CPO) of methane by air. The effects of various operating conditions such as operating pressure and temperature, feed composition, and gas flowrate etc. on the CPO process were investigated. CH4 conversion of 92.2% and selectivity of 92.3% and 83.3% to CO and H2, respectively, were achieved at the pressure of 2.1 MPa. It was found that when the spouted bed reactor was operated within the stable spouting flow regime, the temperature profiles along the bed axis were much more uniform than those operated within the fixed-bed regime. The CH4 conversion and syngas selectivity were found to be close to thermodynamic equilibrium limits. The results of the present investigation showed that spouted bed could be considered as a potential type of chemical reactor for the CPO process of methane.展开更多
Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height ...Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height are measured in a conical spouted bed of 100 mm I.D.at different gas velocities.The simulation results are compared with measurements of bed pressure drop and fountain height.The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls.It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data.The present study provides a useful basis for further works on the CFD simulation of conical spouted bed.展开更多
Minimum spouting velocity (Ums) is one of the most important flow characteristics for proper design and operation of spouted bed reactors. Many correlations for Ums have been published since spouted bed technology w...Minimum spouting velocity (Ums) is one of the most important flow characteristics for proper design and operation of spouted bed reactors. Many correlations for Ums have been published since spouted bed technology was initiated in 1955. In this paper, a new correlation is developed for Ums based on 767 published experimental data covering both high pressure and high temperature conditions. The calculated and the measured results of Ums are in better agreement than other published correlations.展开更多
The development of intensification technology for spouted beds has become a current research focus,and an effective way to improve the efficiency of spouted beds is to reform their structure.Although numerous studies ...The development of intensification technology for spouted beds has become a current research focus,and an effective way to improve the efficiency of spouted beds is to reform their structure.Although numerous studies have been conducted on conventional beds,there are few reviews on the comprehensive application of intensification technology for spouted beds.In this paper,we comprehensively review the role of intensification technology in spouted beds for use in hydrodynamics,drying,desulfurization,pyrolysis,coating,biomass and waste gasification,and biomass drying from the perspective of experiment and simulation.Finally,potential problems and challenges in current spouted-bed research are summarized.展开更多
A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca...A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca(OH)2 conversion were experimentally investigated. The particle sizes and composition of CaCO3 produced were characterized with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that ultrafine CaCO3 particles with mean size of 80 nm could be obtained with this novel process.By modifying the Arrhenius Equation and considering the Ca(OH)2 state, a kinetic model was established to describe the process in the spouted bed. The model parameters estimated from the reaction-drying experiments were found to fit well the experimental data, indicating the applicability of the proposed kinetic model.展开更多
In a spouted bed of 80mm in ID and 1700mm in height, the gas residence time distributions at different radial positions in both spout and annular area were measured with five different kinds of particles as spouting m...In a spouted bed of 80mm in ID and 1700mm in height, the gas residence time distributions at different radial positions in both spout and annular area were measured with five different kinds of particles as spouting material, air as spouting gas, and hydrogen as tracer. The effects of superficial gas velocity, operating pressure, particle size and its category on gas residence time distribution were discussed. It was found that the gas velocity profile in spout was more uniform than that in annulus. It could be concluded that the gas flow in the spout could be treated as a plug-flow, while that in the annulus inhibited a strong non-ideal flow behavior. Increasing the superficial gas velocity and decreasing the operating pressure, the particle density and its size gave rise to spouting disturbance, thus the measured tracer concentrations vs. time curves fluctuated. The variances of residence time distribution curves could be taken as a measure of the gas fluctuation degree.展开更多
Optimization of draft tube position in a spouted bed reactor used for treatment of wastewater containing low concentration of heavy metals is investigated in this paper. Response surface methodology is used to optimiz...Optimization of draft tube position in a spouted bed reactor used for treatment of wastewater containing low concentration of heavy metals is investigated in this paper. Response surface methodology is used to optimize the draft tube height, the draft tube width and the gap between the bottom of the draft tube and the inlet nozzle. It is observed that the draft tube with a height of 60 millimeter, width of 12 millimeter and the gap of 13 millimeter between its bottom and inlet nozzle, results in optimum value of minimum spouting velocity, measured 45 cubic centimeter per second (2.7 Liter per minute) .展开更多
The spouted bed has been used in the coating process of high-density nuclear fuel particle.The particle fluidization behaviors in pseudo-2D and 3D spouted beds were simulated and validated.The effects of four independ...The spouted bed has been used in the coating process of high-density nuclear fuel particle.The particle fluidization behaviors in pseudo-2D and 3D spouted beds were simulated and validated.The effects of four independent variables(cone angle,particle density,inlet gas velocity,and particle loading)on particle fluidization behaviors in the 3D spouted bed were investigated systematically.The cone angle effect on fluidization mechanism was studied quantitatively first time.A new fluidization quality index was proposed based on the particle entrainment principle,and an extreme value was obtained when the cone angle was 60°,considered to be the optimum value for the 3D conical spouted bed.It was indicated the gas–solid contact efficiency can be kept up if the gas velocity was proportional to ρ_(p)^(0.65) and N_(p)^(0.78) when the particle density or loading was increased.These results will be useful for geometry and operation parameters design of the 3D conical spouted bed and helpful for developing the fluidization mechanism of high-density particles.展开更多
文摘Numerical simulation study is conducted for a pressurized spouted fluidized bed coal carbonizer, in which hydrodynamics of pressurized spouted fluidized bed, chemical reactions and energy balance are taken into account. The effect of operating conditions such as bed pressure, air and steam mass flow ratio, temperature on product compositions in the bed is investigated. According to the calculated results, bed pressure and bed temperature have the key effects on coal semi gasification.
基金supported by the Key Technology Research and Development Program of Zhejiang(2019C01127)the Natural Science Foundation of Zhejiang Province(LQ20E060012).
文摘In order to grasp the particle flow characteristics and energy consumption of industrial fluidized spouted beds,we conduct numerical simulations on the basis of a Computational Particle Fluid Dynamics(CPFD)approach.In particular,the traction model of Wen-Yu-Ergun is used and different inlet conditions are considered.Using a low-speed fluidizing gas,the flow state of the particles is better and the amount of particles accumulated at the bottom of the bed wall becomes smaller.For the same air intake,the energy loss of a circular nozzle is larger than that of a square nozzle.
基金Supported by the Doctorate Discipline Foundation of the Ministry of Education of China(No.2000042053)& China National Petroleum Co
文摘On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for making syngas via catalytic partial oxidation (CPO) of methane by air. The effects of various operating conditions such as operating pressure and temperature, feed composition, and gas flowrate etc. on the CPO process were investigated. CH4 conversion of 92.2% and selectivity of 92.3% and 83.3% to CO and H2, respectively, were achieved at the pressure of 2.1 MPa. It was found that when the spouted bed reactor was operated within the stable spouting flow regime, the temperature profiles along the bed axis were much more uniform than those operated within the fixed-bed regime. The CH4 conversion and syngas selectivity were found to be close to thermodynamic equilibrium limits. The results of the present investigation showed that spouted bed could be considered as a potential type of chemical reactor for the CPO process of methane.
基金Supported by the National Natural Science Foundation of China(51206020)the Program for New Century Excellent Talents in University(NCET-12-0703)the Northeast Petroleum University Foundation
文摘Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height are measured in a conical spouted bed of 100 mm I.D.at different gas velocities.The simulation results are compared with measurements of bed pressure drop and fountain height.The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls.It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data.The present study provides a useful basis for further works on the CFD simulation of conical spouted bed.
基金the National Natural Science Foundation of China through the program "Time and Spatial Multi-Scale Interactions in Chemical Engineering and Their Effects" (Grant No. 20490201).
文摘Minimum spouting velocity (Ums) is one of the most important flow characteristics for proper design and operation of spouted bed reactors. Many correlations for Ums have been published since spouted bed technology was initiated in 1955. In this paper, a new correlation is developed for Ums based on 767 published experimental data covering both high pressure and high temperature conditions. The calculated and the measured results of Ums are in better agreement than other published correlations.
基金supported by the National Natural Science Foundation of China(22178286)Shaanxi Qin Chuangyuan“scientist and engineer”team construction project(2022KXJ-041).
文摘The development of intensification technology for spouted beds has become a current research focus,and an effective way to improve the efficiency of spouted beds is to reform their structure.Although numerous studies have been conducted on conventional beds,there are few reviews on the comprehensive application of intensification technology for spouted beds.In this paper,we comprehensively review the role of intensification technology in spouted beds for use in hydrodynamics,drying,desulfurization,pyrolysis,coating,biomass and waste gasification,and biomass drying from the perspective of experiment and simulation.Finally,potential problems and challenges in current spouted-bed research are summarized.
基金Supported by the Three-Item Science & Technology Foundation of Fujian Province(K02017)
文摘A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca(OH)2 conversion were experimentally investigated. The particle sizes and composition of CaCO3 produced were characterized with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that ultrafine CaCO3 particles with mean size of 80 nm could be obtained with this novel process.By modifying the Arrhenius Equation and considering the Ca(OH)2 state, a kinetic model was established to describe the process in the spouted bed. The model parameters estimated from the reaction-drying experiments were found to fit well the experimental data, indicating the applicability of the proposed kinetic model.
基金Supported by the National Natural Science Foundation of China (No. 20490201) the Ministry of Education of China through the Doctorate Discipline Foundation (No. 2000042503).
文摘In a spouted bed of 80mm in ID and 1700mm in height, the gas residence time distributions at different radial positions in both spout and annular area were measured with five different kinds of particles as spouting material, air as spouting gas, and hydrogen as tracer. The effects of superficial gas velocity, operating pressure, particle size and its category on gas residence time distribution were discussed. It was found that the gas velocity profile in spout was more uniform than that in annulus. It could be concluded that the gas flow in the spout could be treated as a plug-flow, while that in the annulus inhibited a strong non-ideal flow behavior. Increasing the superficial gas velocity and decreasing the operating pressure, the particle density and its size gave rise to spouting disturbance, thus the measured tracer concentrations vs. time curves fluctuated. The variances of residence time distribution curves could be taken as a measure of the gas fluctuation degree.
文摘Optimization of draft tube position in a spouted bed reactor used for treatment of wastewater containing low concentration of heavy metals is investigated in this paper. Response surface methodology is used to optimize the draft tube height, the draft tube width and the gap between the bottom of the draft tube and the inlet nozzle. It is observed that the draft tube with a height of 60 millimeter, width of 12 millimeter and the gap of 13 millimeter between its bottom and inlet nozzle, results in optimum value of minimum spouting velocity, measured 45 cubic centimeter per second (2.7 Liter per minute) .
基金funded by National Youth Talent Support Program(grant number 20224723061)National major S&T Project(grant number ZX06901).
文摘The spouted bed has been used in the coating process of high-density nuclear fuel particle.The particle fluidization behaviors in pseudo-2D and 3D spouted beds were simulated and validated.The effects of four independent variables(cone angle,particle density,inlet gas velocity,and particle loading)on particle fluidization behaviors in the 3D spouted bed were investigated systematically.The cone angle effect on fluidization mechanism was studied quantitatively first time.A new fluidization quality index was proposed based on the particle entrainment principle,and an extreme value was obtained when the cone angle was 60°,considered to be the optimum value for the 3D conical spouted bed.It was indicated the gas–solid contact efficiency can be kept up if the gas velocity was proportional to ρ_(p)^(0.65) and N_(p)^(0.78) when the particle density or loading was increased.These results will be useful for geometry and operation parameters design of the 3D conical spouted bed and helpful for developing the fluidization mechanism of high-density particles.