期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Properties, Phases and Microstructure of Microwave Sintered W-20Cu Composites from Spray Pyrolysis-continuous Reduction Processed Powders 被引量:4
1
作者 TAO Jianqin SHI Xiaoliang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期38-44,共7页
The effects of microwave sintering on the properties, phases and microstructure of W-2OCu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with t... The effects of microwave sintering on the properties, phases and microstructure of W-2OCu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with the conventional hot-press sintering, microwave sintering to W-2OCu composites could be achieved with lower sintering temperature and shorter sintering time. Furthermore, microwave sintered W-Cu composites with high densification, homogenous microstructure and excellent properties were obtained. Microwave sintering could also result in finer microstructures. :~ 展开更多
关键词 W-2OCu composite powder spray pyrolysis-continuous reduction microwave sintefing
下载PDF
Microwave Sintering of W-15Cu Ultrafine Composite Powder Prepared by Spray Drying & Calcining-continuous Reduction Technology
2
作者 舒敬萍 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期281-284,共4页
The effects of microwave sintering and conventional H2 sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying & calcining-continuous reductio... The effects of microwave sintering and conventional H2 sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying & calcining-continuous reduction technology were investigated. In comparison to the conventional HE sintering processing, microwave sintering to W-15Cu can be achieved at lower sintering temperature and shorter sintering time. Furthermore, higher performances in microwave sintered compacts were obtained, but high microwave sintering temperature or long microwave sintering time could result in coarser microstructures. 展开更多
关键词 W-15Cu ultrafine composite powder spray drying calcining continuous reduction microwave sintering
下载PDF
Enhanced selective catalytic reduction of NO with NH3 via porous micro-spherical aggregates of Mn–Ce–Fe–Ti mixed oxide nanoparticles 被引量:4
3
作者 Junqi Tian Ke Zhang +6 位作者 Wei Wang Fu Wang Jianming Dan Shengchao Yang Jinli Zhang Bin Dai Feng Yu 《Green Energy & Environment》 SCIE CSCD 2019年第3期311-321,共11页
We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitatio... We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitation and spray drying(CP-SD) method. The catalyst was systematically characterized, and its morphological structure and surface properties were identified. Compare with conventional Mn–Ce–Fe–Ti(CP) catalysts, the Mn–Ce–Fe–Ti(CP-SD) catalyst had superior surface-adsorbed oxygen leading to enhanced 'fast NH3-SCR' reaction. The asobtained Mn–Ce–Fe–Ti(CP-SD) catalyst offered excellent NO conversion and N2 selectivity of 100.0% and 84.8% at 250℃, respectively, with a gas hourly space velocity(GHSV) of 40,000 h-1. The porous micro-spherical structure provides a larger surface area and more active sites to adsorb and activate the reaction gases. In addition, the uniform distribution and strong interaction of manganese, iron, cerium, and titanium oxide species improved H2O and SO2 resistance. The results showed that the Mn–Ce–Fe–Ti(CP-SD) catalyst could be used prospectively as a denitration(De-NOx) catalyst. 展开更多
关键词 Mn-Ce-Fe-Ti mixed oxide POROUS MICROSPHERES spray drying Selective catalytic reduction DENITRATION
下载PDF
Investigations of the effects of two typical jet crushing methods on the atomization and dust reduction performance of nozzles 被引量:2
4
作者 Han Han Hetang Wang +3 位作者 Qi Zhang Yunhe Du Haojie Wang Hui Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期92-106,共15页
Single-fuid nozzles and dual-fuid nozzles are the two typical jet crushing methods used in spray dust reduction. To distinguish the atomization mechanism of single-fuid and dual-fuid nozzles and improve dust control e... Single-fuid nozzles and dual-fuid nozzles are the two typical jet crushing methods used in spray dust reduction. To distinguish the atomization mechanism of single-fuid and dual-fuid nozzles and improve dust control efciency at the coal mining faces, the atomization characteristics and dust reduction performance of the two nozzles were quantitatively compared. Results of experiments show that, as water supply pressure increased, the atomization angle of the swirl pressure nozzle reaches a maximum of 62° at 6 MPa and then decreases, but its droplet size shows an opposite trend with a minimum of 41.7 μm. The water supply pressure helps to improve the droplet size and the atomization angle of the internal mixing air–liquid nozzle, while the air supply pressure has a suppressive efect for them. When the water supply pressure is 0.2 MPa and the air supply pressure reaches 0.4 MPa, the nozzle obtains the smallest droplet size which is 10% smaller than the swirl pressure nozzle. Combined with the dust reduction experimental results, when the water consumption at the working surface is not limited, using the swirl pressure nozzle will achieve a better dust reduction efect. However, the internal mixing air–liquid nozzle can achieve better and more economical dust reduction performance in working environments where water consumption is limited. 展开更多
关键词 Dust control spray nozzle Atomization characteristics Dust reduction performance
下载PDF
Evaluating droplet distribution of spray-nozzles for dust reduction in livestock buildings using machine vision
5
作者 Saman Abdanan Mehdizadeh Thomas M Banhazi 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2015年第5期58-64,共7页
Previous studies have demonstrated the negative effects of sub-optimal air quality on profitability,production efficiency,environmental sustainability and animal welfare.Experiments were conducted to assess potential ... Previous studies have demonstrated the negative effects of sub-optimal air quality on profitability,production efficiency,environmental sustainability and animal welfare.Experiments were conducted to assess potential environmental improvement techniques such as installing oil-spraying systems in piggery buildings.The developed spray system worked very well and it was easy to assemble and operate.However,before selecting the most suitable spray heads,their capacity to uniformly distribute the oily mixture and the area covered by the spray heads had to be assessed.Machine vision techniques were used to evaluate the ability of different spray heads to evenly distribute the oil/water mixture.The results indicated that the best coverage was achieved by spray head No.4 and spray head No.1 which covered 79%and 67%of the target area,respectively.Spray distribution uniformity(variance)value was the lowest for spray head No.4(0.015).Spray head No.3 had the highest variance value(0.064).As the lowest variance means higher uniformity,nozzle No.4 was identified as the most suitable spray head for dust reduction in livestock buildings. 展开更多
关键词 spray head livestock buildings dust reduction machine vision spray distribution uniformity animal welfare
原文传递
Spray,droplet evaporation,combustion,and emission characteristics of future transport fuels for compression-ignition engines:A review
6
作者 Leang So Khuong Nozomu Hashimoto Osamu Fujita 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2024年第4期575-613,共39页
This review examines the potential of hydrogen,ammonia,and biodiesel as alternative fuels,focusing on spray dynamics,droplet evaporation,combustion,and emissions.Hydrogen offers superior combustion characteristics but... This review examines the potential of hydrogen,ammonia,and biodiesel as alternative fuels,focusing on spray dynamics,droplet evaporation,combustion,and emissions.Hydrogen offers superior combustion characteristics but faces challenges in NO_(x)emissions.Strategies like nonpremixed direct injection,increased intake boost pressure,and low-pressure EGR are suggested for robust hydrogen combustion in compression-ignition engines.Control of hydrogen start of injection(SOI)and water injection(WI)are identified as effective techniques for reducing NO_(x)emissions.Ammonia shows inferior combustion and higher NO_(x)and unburned NH_(3)emissions in the same conditions as conventional fuels with conventional engines.Understanding ammonia spray and evaporation conditions is significant for optimizing an ammonia-air mixture and minimizing wall impingement and ammonia trap in the crevice,thereby improving combustion and emission reduction.Increasing intake pressure,injection pressure,and EGR rate,employing a turbulent jet,and preheating ammonia improve efficiency and reduce NO_(x)emissions.Utilizing ammonia combustion requires the implementation of after-treatment systems such as NH_(3)adsorber and De NO_(x)catalysts to mitigate unburned NH_(3)and NO_(x)emissions.Biodiesel affects the fuel supply system,combustion,and emission characteristics according to its viscosity and density.Increasing injection pressure and blending with volatile fuels enhance spray and combustion.Optimum biodiesel preheating temperatures for the injection pump and injector are crucial for achieving the best pump capacity and spray formation.By utilizing biodiesel-PODE blends and investigating low-temperature biodiesel combustions,there is potential to improve thermal efficiency and PMNO_(x)trade-off.Therefore,carbon-neutral fuel adoption should be accelerated to mitigate CO_(2)emissions,highlighting the importance of combustion techniques and emissions reduction strategies. 展开更多
关键词 Carbon-neutral fuels spray formation Droplet evaporation Injection strategies Combustion efficiency Emission reduction
原文传递
Spray drift characteristics of pulse-width modulation sprays in wind tunnel
7
作者 Longlong Li Liping Chen +4 位作者 Ruirui Zhang Qing Tang Tongchuan Yi Boqin Liu Wei Deng 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第4期7-15,共9页
Pulse-width modulation(PWM)sprays can improve flow accuracy by adjusting duty cycle and frequency signal which accurately controls the relative proportion of opening time of solenoid valve.The objective of this resear... Pulse-width modulation(PWM)sprays can improve flow accuracy by adjusting duty cycle and frequency signal which accurately controls the relative proportion of opening time of solenoid valve.The objective of this research was to determine the impacts of PWM duty cycle and frequency on spray drift characteristic.Spray tests were conducted in a wind tunnel with a PWM variable-rate spraying system.The airborne drift and sediment drift were determined with tracer method,and the drift potential reduction(DPR)compared with reference condition of 100%duty cycle at vertical profile and horizontal planes were calculated,respectively.The results show that,at a given frequency,droplet size decreases with the increase of duty cycle,the main reason is that the liquid does not reach full pattern development at lower duty cycle.Duty cycle has a greater impact than the frequency on spray drift,the influence weights of duty cycle on airborne drift and sediment drift were 88.32%and 77.89%,respectively.At a lower PWM frequency,in addition to the droplet size,the spray drift may be affected by the pulsed spray pattern.From the perspective of reducing spray drift,it is recommended that the PWM duty cycle should be set in the range of 20%-70%to reduce the potential drift in PWM sprays.This research provides a pesticide drift reduction scheme for variable spraying technology,which can serve as a theoretical basis for PWM parameter selection. 展开更多
关键词 NOZZLE spray drift pulse-width modulation drift potential reduction droplets spectral
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部