In this study,the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA)and gas production(helium and hydrogen)in the first wall,as we...In this study,the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA)and gas production(helium and hydrogen)in the first wall,as well as the tritium breeding ratio(TBR)in the coolant and tritium breeding zones.Therefore,the modeling of the magnetic fusion reactor was determined based on the blanket parameters of the International Thermonuclear Experimental Reactor(ITER).Stainless steel(SS 316 LNIG),Oxide Dispersion Strengthened Steel alloy(PM2000 ODS),and China low-activation martensitic steel(CLAM)were used as the first wall(FW)materials.Fluoride family molten salt materials(FLiBe,FLiNaBe,FLiPb)and lithium oxide(LiO_(2))were considered the coolant and tritium production material in the blanket,respectively.Neutron transport calculations were performed using the wellknown 3D code MCNP5 using the continuous-energy Monte Carlo method.The built-in continuous energy nuclear and atomic data libraries along with the Evaluated Nuclear Data file(ENDF)system(ENDF/B-V and ENDF/B-VI)were used.Additionally,the activity cross-section data library CLAW-IV was used to evaluate both the DPA values and gas production of the first wall(FW)materials.An interface computer program written in the FORTRAN 90 language to evaluate the MCNP5 outputs was developed for the fusion reactor blanket.The results indicated that the best TBR value was obtained for the use of the FLiPb coolant,whereas depending on the thickness,the first wall replacement period in terms of radiation damage to all materials was between 6 and 11 years.展开更多
Smart materials have found numerous applications in many areas in civil engineering recently. One class of these materials is shape memory alloy (SMA) which exhibits several unique characteristics such as superelastic...Smart materials have found numerous applications in many areas in civil engineering recently. One class of these materials is shape memory alloy (SMA) which exhibits several unique characteristics such as superelasticity and shape memory effect. Due to these characteristics, research efforts have been extended to use SMA in controlling civil structures. This paper investigates the effectiveness of SMA reinforcements in enhancing the behavior of shear walls, especially when subjected to seismic excitations. Two ordinary and coupled shear walls were introduced as reference structures and were modeled by ABAQUS software. For improving the seismic response of the shear walls, vertical SMA reinforcing bars were proposed to be implemented like conventional steel reinforcements, throughout the height of the structures and in every connecting beam in the coupled shear wall system. The one dimensional superelastic model of SMA material was implemented in the computer software using FORTRAN code. The dynamic response of the shear walls subjected to seismic loading was investigated through time history analyses under El-centro and Koyna records. The results showed that using superelastic SMA material instead of steel bars caused remarkable reduction in residual displacement for both ordinary and coupled shear walls. In addition, SMA reinforcements could significantly decrease the maximum deflection of the coupled shear wall system.展开更多
The thermal properties of different clay samples obtained from locations in Akwa Ibom State, Nigeria were investigated and compared, and in order to establish their suitability as building material from energy conserv...The thermal properties of different clay samples obtained from locations in Akwa Ibom State, Nigeria were investigated and compared, and in order to establish their suitability as building material from energy conservation point of view. The results showed that stoneware clay has the highest solar radiation absorptivity of 22 32 m -1 while kaolin clay has the lowest radiation absoptivity of 14 46 m -1 A model for the prediction of temperature variation with thickness of the samples was developed. Results showed that kaolin would make the best choice for the design of a naturally cooled building.展开更多
According to the reliability of material strength,the optimal design for the cross sectional size of thin walled box beam was studied.Firstly the cross sectional size as design random variable was determined,then its...According to the reliability of material strength,the optimal design for the cross sectional size of thin walled box beam was studied.Firstly the cross sectional size as design random variable was determined,then its stochastic nature was researched,with which the objective function is to seek the maximum reliability of the beam under given constraint conditions.This way is not the same as the conventional optimal design for the minimum weight of the material.With establishing the optimal objective,the reliability of the material under conditions of static and fatigue was considered.The corresponding calculated expressions are given.Normally the cross section sizes are fitted to the normal distribution,for the simplification of the design variable,the variation of the section size is assumed as a dependent variable proportional to the mean of the size.The way is different not only with the conventional optimal design but also with the common reliability design.The maximum reliability of material is obtained,meanwhile the area of the cross section is reduced,i.e.,the weight of the material is decreased.展开更多
Lubricant is harmful to the mechanical properties of the sintered materials. Die wall lubrication was applied on warm compaction powder metallurgy in the hope of reducing the concentration level of the admixed lubrica...Lubricant is harmful to the mechanical properties of the sintered materials. Die wall lubrication was applied on warm compaction powder metallurgy in the hope of reducing the concentration level of the admixed lubricant. Iron based samples were prepared by die wall lubricated warm compaction at 175 ℃, using a compacting pressure of 550 MPa. Emulsified polytetrafluoroethylene(PTFE) was used as die wall lubricant. Admixed lubricant concentration ranging from 0 to 0.5% was tested. Extremely low admixed lubricant contents were used. Results show that in addition to the decrease in ejection forces, the green density of the compacts increases with the decrease of admixed lubricant content until it reaches the maximum at 0.06% of lubricant content, then decreases with the decrease of admixed lubricant content. The mechanical properties of the sintered compacts that contain more than 0.06% admixed lubricant are better than those of the samples that contain lesser lubricant. No scoring was observed in all die wall lubricated experiments.展开更多
This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressur...This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.展开更多
This study proposes three possible keel-surface layer combinations to implement a new type of thermally insulating decorative wall system.A set of 8 samples has been studied.In particular,through theoretical calculati...This study proposes three possible keel-surface layer combinations to implement a new type of thermally insulating decorative wall system.A set of 8 samples has been studied.In particular,through theoretical calculations,simulations,and experimental verification,the influence of different types of connecting structures on the overall thermal performance of the wall system has been determined.It has been found that a proper combination of these elements can meet existing energy-saving standards and effectively reduce the energy loss caused by thermal bridges due to the installation of steel keels at the edges of integrated wall panels.展开更多
The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material(PCM).The wall separates two environments with different thermal properties.The first one is conditioned,w...The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material(PCM).The wall separates two environments with different thermal properties.The first one is conditioned,while the adjacent space is characterized by a temperature that changes sinusoidally in time.The effect of the PCM is assessed through a comparative analysis of the cases with and without PCM.The performances are evaluated in terms of dimensionless energy stored within the wall,comfort temperature and variations of these quantities as a function of the amount of PCM and its emplacement.展开更多
The preparation, characterization, and test of the first wall materials designed to be used in the fusion reactor have remained challenging problems in the material science. This work uses the firstprinciples method a...The preparation, characterization, and test of the first wall materials designed to be used in the fusion reactor have remained challenging problems in the material science. This work uses the firstprinciples method as implemented in the CASTEP package to study the influ ences of the doped titanium carbide on the structural sta bility of the WTiC material. The calculated total energy and enthalpy have been used as criteria to judge the structural models built with consideration of symmetry. Our simulation indicates that the doped TiC tends to form its own domain up to the investigated nanoscale, which implies a possible phase separation. This result reveals the intrinsic reason for the composite nature of the WTiC material and provides an explanation for the experimen tally observed phase separation at the nanoscale. Our approach also sheds a light on explaining the enhancing effects of doped components on the durability, reliability, corrosion resistance, etc., in many special steels.展开更多
The main research purpose of this paper is to study the mechanical properties of the sand gravel packing of the retaining wall under the creep condition of reinforced materials, in order to figure it out, Indoor physi...The main research purpose of this paper is to study the mechanical properties of the sand gravel packing of the retaining wall under the creep condition of reinforced materials, in order to figure it out, Indoor physical experiments were carried out.展开更多
Existing fire test methods reply on measurement of the energy released rate to identify the combustion properties of a material. However, they are inadequate when assessing combustion characteristics of a composite ma...Existing fire test methods reply on measurement of the energy released rate to identify the combustion properties of a material. However, they are inadequate when assessing combustion characteristics of a composite material characterized by vertical flame spread and different inside/outside combustion behaviors. In addition, major factors that affect the flame spread outside the building include the combustion characteristics of materials used as well as air flow around a skyscraper. However, since it is highly difficult to analyze and forecast the air flow from a fire engineering viewpoint, an investigation of the flame spread characteristics of exterior walls of a building depends primarily on the combustion characteristics of materials. Hence, this study examined, using ISO 13785-2 testing method, the temperature changes and vertical flame spread behaviors of one of the finishing materials for exterior walls--(generic & fire-resistant) aluminium panels by a real-scale combustion experiment. According to the results of real-scale experiment, the maximum heat temperature of 987.7 ℃ was recorded seven minutes after the fire test was initiated while the fire-resistant aluminium panels showed the maximum heat temperature of 850.2℃ after exposed for approximately 12 min. The vertical flame spread properties put more emphasis on the time required to reach the maximum temperature rather than its magnitude and there was a five minutes difference between the materials.展开更多
Solar walls constitute an important green architectural feature that positively contributes to energy saving in buildings. Different configurations may be proposed, such as, solar wall with Phase Change Material (PCM)...Solar walls constitute an important green architectural feature that positively contributes to energy saving in buildings. Different configurations may be proposed, such as, solar wall with Phase Change Material (PCM), composite solar wall, photovoltaic solar wall, zigzag solar wall, and solar hybrid wall. Being environmentally friendly, these passive solar components can provide thermal comfort and help save energy. Their disadvantages include principally unpredictable heat transfer, heat losses by night for some systems or inverse thermo-siphon phenomenon. Appropriate energy management techniques can be used to control and optimize the performances of solar walls. An experimental study for energy management of a PCM based solar wall is described in this paper. The experimental results show the effectiveness of the proposed automatic control system in regulating the capture of solar energy.展开更多
The study of forced convection in a porous medium has aroused and still arouses today the interest of many scientists and industrialists. A considerable amount of work has been undertaken following the discovery of th...The study of forced convection in a porous medium has aroused and still arouses today the interest of many scientists and industrialists. A considerable amount of work has been undertaken following the discovery of the phenomenon. Solving a standard problem of forced convection in porous media comes down to predicting the temperature and velocity fields as well as the intensity of the flow as a function of the various parameters of the problem. A numerical study of the condensation in forced convection of a pure and saturated vapor on a vertical wall covered with a porous material is presented. The transfers in the porous medium and the liquid film are described respectively by the Darcy-Brinkman model and the classical boundary layer equations. The dimensionless equations are solved by an implicit finite difference method and the iterative Gauss-Seidel method. Our study makes it possible to examine and highlight the role of parameters such as: the Froude number and the thickness of the porous layer on the speed and the temperature in the porous medium. Given the objective of our study, the presentation of velocity and temperature profiles is limited in the porous medium. The results show that the Froude number does not influence the thermal field. The temperature increases with an increase in the thickness of the dimensionless porous layer. The decrease in the Froude number leads to an increase in the hydrodynamic field.展开更多
Some disadvantages associated with conventional brick masonry are: high cost of construction, lower compressive strength and less durability. In order to resolve these problems, a new technique of constructing walls u...Some disadvantages associated with conventional brick masonry are: high cost of construction, lower compressive strength and less durability. In order to resolve these problems, a new technique of constructing walls using large size baked clay blocks is introduced. For this purpose, clay blocks of size 150 mm × 300 mm × 1980 mm were cast at a pressure of 6 MPa, and fired at a temperature of 700℃. In this paper, compressive strength and tensile strength of baked clay were investigated in order to find its suitability as a walling material for low cost houses. Cubes of 150 mm sides were tested in compression and the beams were tested in flexure. The results showed that compressive strength of baked clay cubes was found to be 10 MPa and tensile strength, in terms of modulus of rupture, was found to be 2.3 MPa. Since the baked clay blocks are larger in size than traditional bricks, it is inferred that the blocks could be used as a cheaper and stronger walling material.展开更多
The present work presents a study of forced convection condensation of a laminar film of a pure and saturated vapor on a porous plate inclined to the vertical. The Darcy-Brinkman-Forchheimer model is used to write the...The present work presents a study of forced convection condensation of a laminar film of a pure and saturated vapor on a porous plate inclined to the vertical. The Darcy-Brinkman-Forchheimer model is used to write the flow in the porous medium, while the classical boundary layer equations have been exploited in the pure liquid and in the porous medium taking into account inertia and enthalpy convection terms. The problem has been solved numerically. The results are mainly presented in the form of velocity and temperature profiles. The obtained results have been compared with the numerical results of Chaynane et al. [1]. The effects of different influential parameters such as: inclination (ϕ), effective viscosity (Re<sub>K</sub>), and dimensionless thermal conductivity λ<sup>*</sup> on the flow and heat transfers are outlined.展开更多
A dynamic Bayesian error function of material constants of the structure is developed for thin-walled curve box girders. Combined with the automatic search scheme with an optimal step length for the one-dimensional Fi...A dynamic Bayesian error function of material constants of the structure is developed for thin-walled curve box girders. Combined with the automatic search scheme with an optimal step length for the one-dimensional Fibonacci series, Powell's optimization theory is used to perform the stochastic identification of material constants of the thin-walled curve box. Then, the steps in the parameter identification are presented. Powell's identification procedure for material constants of the thin-walled curve box is compiled, in which the mechanical analysis of the thin-walled curve box is completed based on the finite curve strip element (FCSE) method. Some classical examples show that Powell's identification is numerically stable and convergent, indicating that the present method and the compiled procedure are correct and reliable. During the parameter iterative processes, Powell's theory is irrelevant with the calculation of the FCSE partial differentiation, which proves the high computation efficiency of the studied methods. The stochastic performances of the system parameters and responses axe simultaneously considered in the dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step length is solved by adopting the Fibonacci series search method without the need of determining the region, in which the optimized step length lies.展开更多
There exists strong interaction between the plasma and channel wall in the Hall thruster,which greatly affects the discharge performance of the thruster.In this paper,a two-dimensional physical model is established ba...There exists strong interaction between the plasma and channel wall in the Hall thruster,which greatly affects the discharge performance of the thruster.In this paper,a two-dimensional physical model is established based on the actual size of an Aton P70 Hall thruster discharge channel.The particle-in-cell simulation method is applied to study the influences of segmented low emissive graphite electrode biased with anode voltage on the discharge characteristics of the Hall thruster channel.The influences of segmented electrode placed at the ionization region on electric potential,ion number density,electron temperature,ionization rate,discharge current and specific impulse are discussed.The results show that,when segmented electrode is placed at the ionization region,the axial length of the acceleration region is shortened,the equipotential lines tend to be vertical with wall at the acceleration region,thus radial velocity of ions is reduced along with the wall corrosion.The axial position of the maximal electron temperature moves towards the exit with the expansion of ionization region.Furthermore,the electron-wall collision frequency and ionization rate also increase,the discharge current decreases and the specific impulse of the Hall thruster is slightly enhanced.展开更多
A study is presented on the feasibility of an approach based on the combination of Phase Change Materials(PCM)with metal walls in container-type houses.This line of research finds its motivations in recent trends in t...A study is presented on the feasibility of an approach based on the combination of Phase Change Materials(PCM)with metal walls in container-type houses.This line of research finds its motivations in recent trends in the energy and building sectors about energy consumption reduction.Another important objective concerns possible improvements in the comfort provided by such houses during the summer period.The results obtained through numerical solution of the governing equations accounting for heat transfer and latent heat effects associated with the PCM show that the indoor temperature can be reduced with a varying degree of success depending on the considered conditions.展开更多
This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub. It possesses excellent performances such as light-weight, high-...This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub. It possesses excellent performances such as light-weight, high-intensity, fire-resistance, sound-insulation, heat-insulation and no-pollution. Composed with concrete materials, a new type of bearing and energy-efficient block can be gained, which is kind of excellent wall materials and has a wide application prospect.展开更多
Cases abound in Fujian province of applying sustainable materials in the construction of traditional residential buildings, which demonstrate the skills and creative techniques of local builders, reflecting their wisd...Cases abound in Fujian province of applying sustainable materials in the construction of traditional residential buildings, which demonstrate the skills and creative techniques of local builders, reflecting their wisdom in molding and adapting to the environment. This paper probes into the utilization of locally available resources in Fujian traditional residential architecture from the perspective of the characteristics of "reduction, recycling and reuse" of sustainable materials, and puts forward the view that sustainability study of contemporary architecture should be approached from the relationship between man and environment and that inspiration can be drawn from the creative and innovative ideas of the folk residential builders.展开更多
文摘In this study,the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA)and gas production(helium and hydrogen)in the first wall,as well as the tritium breeding ratio(TBR)in the coolant and tritium breeding zones.Therefore,the modeling of the magnetic fusion reactor was determined based on the blanket parameters of the International Thermonuclear Experimental Reactor(ITER).Stainless steel(SS 316 LNIG),Oxide Dispersion Strengthened Steel alloy(PM2000 ODS),and China low-activation martensitic steel(CLAM)were used as the first wall(FW)materials.Fluoride family molten salt materials(FLiBe,FLiNaBe,FLiPb)and lithium oxide(LiO_(2))were considered the coolant and tritium production material in the blanket,respectively.Neutron transport calculations were performed using the wellknown 3D code MCNP5 using the continuous-energy Monte Carlo method.The built-in continuous energy nuclear and atomic data libraries along with the Evaluated Nuclear Data file(ENDF)system(ENDF/B-V and ENDF/B-VI)were used.Additionally,the activity cross-section data library CLAW-IV was used to evaluate both the DPA values and gas production of the first wall(FW)materials.An interface computer program written in the FORTRAN 90 language to evaluate the MCNP5 outputs was developed for the fusion reactor blanket.The results indicated that the best TBR value was obtained for the use of the FLiPb coolant,whereas depending on the thickness,the first wall replacement period in terms of radiation damage to all materials was between 6 and 11 years.
文摘Smart materials have found numerous applications in many areas in civil engineering recently. One class of these materials is shape memory alloy (SMA) which exhibits several unique characteristics such as superelasticity and shape memory effect. Due to these characteristics, research efforts have been extended to use SMA in controlling civil structures. This paper investigates the effectiveness of SMA reinforcements in enhancing the behavior of shear walls, especially when subjected to seismic excitations. Two ordinary and coupled shear walls were introduced as reference structures and were modeled by ABAQUS software. For improving the seismic response of the shear walls, vertical SMA reinforcing bars were proposed to be implemented like conventional steel reinforcements, throughout the height of the structures and in every connecting beam in the coupled shear wall system. The one dimensional superelastic model of SMA material was implemented in the computer software using FORTRAN code. The dynamic response of the shear walls subjected to seismic loading was investigated through time history analyses under El-centro and Koyna records. The results showed that using superelastic SMA material instead of steel bars caused remarkable reduction in residual displacement for both ordinary and coupled shear walls. In addition, SMA reinforcements could significantly decrease the maximum deflection of the coupled shear wall system.
文摘The thermal properties of different clay samples obtained from locations in Akwa Ibom State, Nigeria were investigated and compared, and in order to establish their suitability as building material from energy conservation point of view. The results showed that stoneware clay has the highest solar radiation absorptivity of 22 32 m -1 while kaolin clay has the lowest radiation absoptivity of 14 46 m -1 A model for the prediction of temperature variation with thickness of the samples was developed. Results showed that kaolin would make the best choice for the design of a naturally cooled building.
文摘According to the reliability of material strength,the optimal design for the cross sectional size of thin walled box beam was studied.Firstly the cross sectional size as design random variable was determined,then its stochastic nature was researched,with which the objective function is to seek the maximum reliability of the beam under given constraint conditions.This way is not the same as the conventional optimal design for the minimum weight of the material.With establishing the optimal objective,the reliability of the material under conditions of static and fatigue was considered.The corresponding calculated expressions are given.Normally the cross section sizes are fitted to the normal distribution,for the simplification of the design variable,the variation of the section size is assumed as a dependent variable proportional to the mean of the size.The way is different not only with the conventional optimal design but also with the common reliability design.The maximum reliability of material is obtained,meanwhile the area of the cross section is reduced,i.e.,the weight of the material is decreased.
文摘Lubricant is harmful to the mechanical properties of the sintered materials. Die wall lubrication was applied on warm compaction powder metallurgy in the hope of reducing the concentration level of the admixed lubricant. Iron based samples were prepared by die wall lubricated warm compaction at 175 ℃, using a compacting pressure of 550 MPa. Emulsified polytetrafluoroethylene(PTFE) was used as die wall lubricant. Admixed lubricant concentration ranging from 0 to 0.5% was tested. Extremely low admixed lubricant contents were used. Results show that in addition to the decrease in ejection forces, the green density of the compacts increases with the decrease of admixed lubricant content until it reaches the maximum at 0.06% of lubricant content, then decreases with the decrease of admixed lubricant content. The mechanical properties of the sintered compacts that contain more than 0.06% admixed lubricant are better than those of the samples that contain lesser lubricant. No scoring was observed in all die wall lubricated experiments.
文摘This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.
基金The research content of this paper comes from the Urban and Rural Construction Science and Technology Project of Shandong Province,China,Subject No.2018-K9-07.
文摘This study proposes three possible keel-surface layer combinations to implement a new type of thermally insulating decorative wall system.A set of 8 samples has been studied.In particular,through theoretical calculations,simulations,and experimental verification,the influence of different types of connecting structures on the overall thermal performance of the wall system has been determined.It has been found that a proper combination of these elements can meet existing energy-saving standards and effectively reduce the energy loss caused by thermal bridges due to the installation of steel keels at the edges of integrated wall panels.
文摘The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material(PCM).The wall separates two environments with different thermal properties.The first one is conditioned,while the adjacent space is characterized by a temperature that changes sinusoidally in time.The effect of the PCM is assessed through a comparative analysis of the cases with and without PCM.The performances are evaluated in terms of dimensionless energy stored within the wall,comfort temperature and variations of these quantities as a function of the amount of PCM and its emplacement.
基金finantially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘The preparation, characterization, and test of the first wall materials designed to be used in the fusion reactor have remained challenging problems in the material science. This work uses the firstprinciples method as implemented in the CASTEP package to study the influ ences of the doped titanium carbide on the structural sta bility of the WTiC material. The calculated total energy and enthalpy have been used as criteria to judge the structural models built with consideration of symmetry. Our simulation indicates that the doped TiC tends to form its own domain up to the investigated nanoscale, which implies a possible phase separation. This result reveals the intrinsic reason for the composite nature of the WTiC material and provides an explanation for the experimen tally observed phase separation at the nanoscale. Our approach also sheds a light on explaining the enhancing effects of doped components on the durability, reliability, corrosion resistance, etc., in many special steels.
文摘The main research purpose of this paper is to study the mechanical properties of the sand gravel packing of the retaining wall under the creep condition of reinforced materials, in order to figure it out, Indoor physical experiments were carried out.
文摘Existing fire test methods reply on measurement of the energy released rate to identify the combustion properties of a material. However, they are inadequate when assessing combustion characteristics of a composite material characterized by vertical flame spread and different inside/outside combustion behaviors. In addition, major factors that affect the flame spread outside the building include the combustion characteristics of materials used as well as air flow around a skyscraper. However, since it is highly difficult to analyze and forecast the air flow from a fire engineering viewpoint, an investigation of the flame spread characteristics of exterior walls of a building depends primarily on the combustion characteristics of materials. Hence, this study examined, using ISO 13785-2 testing method, the temperature changes and vertical flame spread behaviors of one of the finishing materials for exterior walls--(generic & fire-resistant) aluminium panels by a real-scale combustion experiment. According to the results of real-scale experiment, the maximum heat temperature of 987.7 ℃ was recorded seven minutes after the fire test was initiated while the fire-resistant aluminium panels showed the maximum heat temperature of 850.2℃ after exposed for approximately 12 min. The vertical flame spread properties put more emphasis on the time required to reach the maximum temperature rather than its magnitude and there was a five minutes difference between the materials.
文摘Solar walls constitute an important green architectural feature that positively contributes to energy saving in buildings. Different configurations may be proposed, such as, solar wall with Phase Change Material (PCM), composite solar wall, photovoltaic solar wall, zigzag solar wall, and solar hybrid wall. Being environmentally friendly, these passive solar components can provide thermal comfort and help save energy. Their disadvantages include principally unpredictable heat transfer, heat losses by night for some systems or inverse thermo-siphon phenomenon. Appropriate energy management techniques can be used to control and optimize the performances of solar walls. An experimental study for energy management of a PCM based solar wall is described in this paper. The experimental results show the effectiveness of the proposed automatic control system in regulating the capture of solar energy.
文摘The study of forced convection in a porous medium has aroused and still arouses today the interest of many scientists and industrialists. A considerable amount of work has been undertaken following the discovery of the phenomenon. Solving a standard problem of forced convection in porous media comes down to predicting the temperature and velocity fields as well as the intensity of the flow as a function of the various parameters of the problem. A numerical study of the condensation in forced convection of a pure and saturated vapor on a vertical wall covered with a porous material is presented. The transfers in the porous medium and the liquid film are described respectively by the Darcy-Brinkman model and the classical boundary layer equations. The dimensionless equations are solved by an implicit finite difference method and the iterative Gauss-Seidel method. Our study makes it possible to examine and highlight the role of parameters such as: the Froude number and the thickness of the porous layer on the speed and the temperature in the porous medium. Given the objective of our study, the presentation of velocity and temperature profiles is limited in the porous medium. The results show that the Froude number does not influence the thermal field. The temperature increases with an increase in the thickness of the dimensionless porous layer. The decrease in the Froude number leads to an increase in the hydrodynamic field.
文摘Some disadvantages associated with conventional brick masonry are: high cost of construction, lower compressive strength and less durability. In order to resolve these problems, a new technique of constructing walls using large size baked clay blocks is introduced. For this purpose, clay blocks of size 150 mm × 300 mm × 1980 mm were cast at a pressure of 6 MPa, and fired at a temperature of 700℃. In this paper, compressive strength and tensile strength of baked clay were investigated in order to find its suitability as a walling material for low cost houses. Cubes of 150 mm sides were tested in compression and the beams were tested in flexure. The results showed that compressive strength of baked clay cubes was found to be 10 MPa and tensile strength, in terms of modulus of rupture, was found to be 2.3 MPa. Since the baked clay blocks are larger in size than traditional bricks, it is inferred that the blocks could be used as a cheaper and stronger walling material.
文摘The present work presents a study of forced convection condensation of a laminar film of a pure and saturated vapor on a porous plate inclined to the vertical. The Darcy-Brinkman-Forchheimer model is used to write the flow in the porous medium, while the classical boundary layer equations have been exploited in the pure liquid and in the porous medium taking into account inertia and enthalpy convection terms. The problem has been solved numerically. The results are mainly presented in the form of velocity and temperature profiles. The obtained results have been compared with the numerical results of Chaynane et al. [1]. The effects of different influential parameters such as: inclination (ϕ), effective viscosity (Re<sub>K</sub>), and dimensionless thermal conductivity λ<sup>*</sup> on the flow and heat transfers are outlined.
基金Project supported by the National Natural Science Foundation of China(Nos.10472045,10772078, and 11072108)the National High-Tech Research and Development Program of China(863 Program) (No.2007AA11Z106)
文摘A dynamic Bayesian error function of material constants of the structure is developed for thin-walled curve box girders. Combined with the automatic search scheme with an optimal step length for the one-dimensional Fibonacci series, Powell's optimization theory is used to perform the stochastic identification of material constants of the thin-walled curve box. Then, the steps in the parameter identification are presented. Powell's identification procedure for material constants of the thin-walled curve box is compiled, in which the mechanical analysis of the thin-walled curve box is completed based on the finite curve strip element (FCSE) method. Some classical examples show that Powell's identification is numerically stable and convergent, indicating that the present method and the compiled procedure are correct and reliable. During the parameter iterative processes, Powell's theory is irrelevant with the calculation of the FCSE partial differentiation, which proves the high computation efficiency of the studied methods. The stochastic performances of the system parameters and responses axe simultaneously considered in the dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step length is solved by adopting the Fibonacci series search method without the need of determining the region, in which the optimized step length lies.
基金supported by National Natural Science Foundation of China(Grant Nos.11275034,11605021,11375039)the China Postdoctoral Science Foundation(Grant No.2017M621120)+1 种基金the Key Project of Science and Technology of Liaoning Province(Grant No.201601074)‘the Fundamental Research Funds for the Central Universities’(Grant No.3132017070)
文摘There exists strong interaction between the plasma and channel wall in the Hall thruster,which greatly affects the discharge performance of the thruster.In this paper,a two-dimensional physical model is established based on the actual size of an Aton P70 Hall thruster discharge channel.The particle-in-cell simulation method is applied to study the influences of segmented low emissive graphite electrode biased with anode voltage on the discharge characteristics of the Hall thruster channel.The influences of segmented electrode placed at the ionization region on electric potential,ion number density,electron temperature,ionization rate,discharge current and specific impulse are discussed.The results show that,when segmented electrode is placed at the ionization region,the axial length of the acceleration region is shortened,the equipotential lines tend to be vertical with wall at the acceleration region,thus radial velocity of ions is reduced along with the wall corrosion.The axial position of the maximal electron temperature moves towards the exit with the expansion of ionization region.Furthermore,the electron-wall collision frequency and ionization rate also increase,the discharge current decreases and the specific impulse of the Hall thruster is slightly enhanced.
文摘A study is presented on the feasibility of an approach based on the combination of Phase Change Materials(PCM)with metal walls in container-type houses.This line of research finds its motivations in recent trends in the energy and building sectors about energy consumption reduction.Another important objective concerns possible improvements in the comfort provided by such houses during the summer period.The results obtained through numerical solution of the governing equations accounting for heat transfer and latent heat effects associated with the PCM show that the indoor temperature can be reduced with a varying degree of success depending on the considered conditions.
文摘This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub. It possesses excellent performances such as light-weight, high-intensity, fire-resistance, sound-insulation, heat-insulation and no-pollution. Composed with concrete materials, a new type of bearing and energy-efficient block can be gained, which is kind of excellent wall materials and has a wide application prospect.
基金Founded by National Natural Science Foundation (No. 51278123)Fujian Natural Science Foundation (No.2010J01285)
文摘Cases abound in Fujian province of applying sustainable materials in the construction of traditional residential buildings, which demonstrate the skills and creative techniques of local builders, reflecting their wisdom in molding and adapting to the environment. This paper probes into the utilization of locally available resources in Fujian traditional residential architecture from the perspective of the characteristics of "reduction, recycling and reuse" of sustainable materials, and puts forward the view that sustainability study of contemporary architecture should be approached from the relationship between man and environment and that inspiration can be drawn from the creative and innovative ideas of the folk residential builders.