This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) dire...This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) direct sequence spread spectrum (DS-SS) signals with residual carrier. This approach needs some given parameters, such as the period and code rate of PN sequence. The received signal is firstly sampled and divided into non-overlapping signal vectors according to a temporal window, whose duration is two periods of PN sequence. An autocorrelation matrix is then computed and accumulated by those signal vectors one by one. The PN sequence with residual carrier can be estimated by the principal eigenvector of the autocorrelation matrix. Further more, a digital phase lock loop is used to process the estimated PN sequence, it estimates and tracks the residual carrier and removes the residual carrier in the end. Theory analysis and computer simulation results show that this approach can effectively realize the PN sequence blind estimation from the input DS-SS signals with residual carrier in lower SNR.展开更多
A novel monolithic digitalized random carrier frequency modulation spread-spectrum clock generator (RCF-SSCG) is proposed.In this design,the output frequency of the proposed RCF-SSCG changes with the intensity of th...A novel monolithic digitalized random carrier frequency modulation spread-spectrum clock generator (RCF-SSCG) is proposed.In this design,the output frequency of the proposed RCF-SSCG changes with the intensity of the capacitive charge and discharge current.Its analytical model is induced and the effect of the modulation parameters on the spread spectrum is numerically simulated and discussed.Compared with other works,this design has the advantages of small size,low power consumption and good robustness.The circuit has been fabricated in a 0.5μm CMOS process and applied to a class D amplifier in which the proposed RCF-SSCG occupies an area of 0.112 mm^2 and consumes 9 mW.The experimental results confirm the theoretical analyses.展开更多
基金supported by the National Natural Science Foundation of China (10776040 60602057)+4 种基金Program for New Century Excellent Talents in University (NCET)the Project of Key Laboratory of Signal and Information Processing of Chongqing (CSTC2009CA2003)the Natural Science Foundation of Chongqing Science and Technology Commission (CSTC2009BB2287)the Natural Science Foundation of Chongqing Municipal Education Commission (KJ060509 KJ080517)
文摘This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) direct sequence spread spectrum (DS-SS) signals with residual carrier. This approach needs some given parameters, such as the period and code rate of PN sequence. The received signal is firstly sampled and divided into non-overlapping signal vectors according to a temporal window, whose duration is two periods of PN sequence. An autocorrelation matrix is then computed and accumulated by those signal vectors one by one. The PN sequence with residual carrier can be estimated by the principal eigenvector of the autocorrelation matrix. Further more, a digital phase lock loop is used to process the estimated PN sequence, it estimates and tracks the residual carrier and removes the residual carrier in the end. Theory analysis and computer simulation results show that this approach can effectively realize the PN sequence blind estimation from the input DS-SS signals with residual carrier in lower SNR.
基金Project supported by the National Natural Science Foundation of China(No.60436030).
文摘A novel monolithic digitalized random carrier frequency modulation spread-spectrum clock generator (RCF-SSCG) is proposed.In this design,the output frequency of the proposed RCF-SSCG changes with the intensity of the capacitive charge and discharge current.Its analytical model is induced and the effect of the modulation parameters on the spread spectrum is numerically simulated and discussed.Compared with other works,this design has the advantages of small size,low power consumption and good robustness.The circuit has been fabricated in a 0.5μm CMOS process and applied to a class D amplifier in which the proposed RCF-SSCG occupies an area of 0.112 mm^2 and consumes 9 mW.The experimental results confirm the theoretical analyses.