A CSSL (chromosome segment substitution line), SG-64, carrying a segment of chromosome 4 from African cultivated rice (CG-14) in the genetic background of var. Wuyujing-7 (japonica), showed a spreading panicle, ...A CSSL (chromosome segment substitution line), SG-64, carrying a segment of chromosome 4 from African cultivated rice (CG-14) in the genetic background of var. Wuyujing-7 (japonica), showed a spreading panicle, which was different significantly from that of Wuyujing-7 with an erect compact panicle. The gene controlling a spreading panicle is referred to as Spr3, and is mapped on chromosome 4. To uncover the genetic basis of Spr3, a large F2 population derived from cross between SG-64 and Wuyujing-7 was constructed for fine mapping of the Spr3 locus. The high-resolution linkage analysis revealed that the Spr3 locus was narrowed down to a 4.6-kb region. The delimited genomic DNA regions of Wuyujing-7 and CG-14 were sequenced and compared. Sequence mutations between Wuyujing-7 and CG-14 were evident and the candidate genes for the locus were predicted. Publicly available databases were searched for homologous cDNA sequences. However, any coding regions or other meaningful sequences for the Spr3 locus were not found within this delimited region. This result suggested that Spr3 is an unknown genetic factor in controlling the outspreading of the primary branches in rice inflorescence. In addition, NIL(Spr3) exhibited seed shattering. The formation of spreading panicle was accompanied by a few undesirable traits and the spreading panicle links with seed shattering suggest that the spreading panicle was likely lost during the domestication and selection for high seed productivity of cultivated rice.展开更多
文摘A CSSL (chromosome segment substitution line), SG-64, carrying a segment of chromosome 4 from African cultivated rice (CG-14) in the genetic background of var. Wuyujing-7 (japonica), showed a spreading panicle, which was different significantly from that of Wuyujing-7 with an erect compact panicle. The gene controlling a spreading panicle is referred to as Spr3, and is mapped on chromosome 4. To uncover the genetic basis of Spr3, a large F2 population derived from cross between SG-64 and Wuyujing-7 was constructed for fine mapping of the Spr3 locus. The high-resolution linkage analysis revealed that the Spr3 locus was narrowed down to a 4.6-kb region. The delimited genomic DNA regions of Wuyujing-7 and CG-14 were sequenced and compared. Sequence mutations between Wuyujing-7 and CG-14 were evident and the candidate genes for the locus were predicted. Publicly available databases were searched for homologous cDNA sequences. However, any coding regions or other meaningful sequences for the Spr3 locus were not found within this delimited region. This result suggested that Spr3 is an unknown genetic factor in controlling the outspreading of the primary branches in rice inflorescence. In addition, NIL(Spr3) exhibited seed shattering. The formation of spreading panicle was accompanied by a few undesirable traits and the spreading panicle links with seed shattering suggest that the spreading panicle was likely lost during the domestication and selection for high seed productivity of cultivated rice.