This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and h...This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and heterotrophic bacterioplankton, nitrate, and dissolved organic carbon (DOC) in a run lasting 90 days. Except for DOC, because of poor observation precision,the major seasonal features of the vertical distribution for these components can be simulated by this model. The results show that spring bloom is just a short period of 1-2 weeks and that deposit carbon flux at the bottom interface is about 200 mg /m2 ·d in the first 20 days and then reaches its maximum of 1500mg/m2·d about 2 months later after the spring bloom.展开更多
Using the observations from ICOADS datasets and contemporaneous NCEP/NCAR reanalysis datasets during 1960-2002,the study classifies the airflows in favor of sea fog over the Huanghai (Yellow) Sea in boreal spring (...Using the observations from ICOADS datasets and contemporaneous NCEP/NCAR reanalysis datasets during 1960-2002,the study classifies the airflows in favor of sea fog over the Huanghai (Yellow) Sea in boreal spring (April-May) with the method of trajectory analysis,and analyzes the changes of proportions of warm and cold sea fogs along different paths of airflow.According to the heat balance equation,we investigate the relationships between the marine meteorological conditions and the proportion of warm and cold sea fog along different airflow paths.The major results are summarized as follows.(1) Sea fogs over the Huanghai Sea in spring are not only warm fog but also cold fog.The proportion of warm fog only accounts for 44% in April,while increases as high as 57% in May.(2) Four primary airflow paths leading to spring sea fog are identified.They are originated from the northwest,east,southeast and southwest of the Huanghai Sea,respectively.The occurrence ratios of the warm sea fog along the east and southeast airflow paths are high of 55% and 70%,while these along the southwest and northwest airflow paths are merely 17.9% and 50%.(3) The key physical processes governing the warm/cold sea fog are heat advection transport,longwave radiation cooling at fog top,solar shortwave warming and latent heat flux between airsea interfaces.(4) The characteristics of sea fog along the four airflow paths relate closely to the conditions of water vapor advection,and the vertical distribution of relative humidity.展开更多
文摘This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and heterotrophic bacterioplankton, nitrate, and dissolved organic carbon (DOC) in a run lasting 90 days. Except for DOC, because of poor observation precision,the major seasonal features of the vertical distribution for these components can be simulated by this model. The results show that spring bloom is just a short period of 1-2 weeks and that deposit carbon flux at the bottom interface is about 200 mg /m2 ·d in the first 20 days and then reaches its maximum of 1500mg/m2·d about 2 months later after the spring bloom.
基金supported in part by the National Natural Science Foundation of China under contract Nos 40675013 and 40906010the China Meteorological Administration project for popularizing new techniques under contract No.CMATG2007M23+1 种基金the scientific and technological planning project from Guangdong Province under contract No.2006B37202005The work of Wang Xin is supported by City University of Hong Kong Research Scholarship Enhancement Scheme and the City University of Hong Kong Strategic Research Grants 7002329
文摘Using the observations from ICOADS datasets and contemporaneous NCEP/NCAR reanalysis datasets during 1960-2002,the study classifies the airflows in favor of sea fog over the Huanghai (Yellow) Sea in boreal spring (April-May) with the method of trajectory analysis,and analyzes the changes of proportions of warm and cold sea fogs along different paths of airflow.According to the heat balance equation,we investigate the relationships between the marine meteorological conditions and the proportion of warm and cold sea fog along different airflow paths.The major results are summarized as follows.(1) Sea fogs over the Huanghai Sea in spring are not only warm fog but also cold fog.The proportion of warm fog only accounts for 44% in April,while increases as high as 57% in May.(2) Four primary airflow paths leading to spring sea fog are identified.They are originated from the northwest,east,southeast and southwest of the Huanghai Sea,respectively.The occurrence ratios of the warm sea fog along the east and southeast airflow paths are high of 55% and 70%,while these along the southwest and northwest airflow paths are merely 17.9% and 50%.(3) The key physical processes governing the warm/cold sea fog are heat advection transport,longwave radiation cooling at fog top,solar shortwave warming and latent heat flux between airsea interfaces.(4) The characteristics of sea fog along the four airflow paths relate closely to the conditions of water vapor advection,and the vertical distribution of relative humidity.