This study predicts the characteristics of a compressible polytropic air spring model. A second-order nonlinear autonomous air spring model is presented. The proposed model is based on the assumption that polytropic p...This study predicts the characteristics of a compressible polytropic air spring model. A second-order nonlinear autonomous air spring model is presented. The proposed model is based on the assumption that polytropic processes occur. Isothermal and isentropic compression and expansion of the air within the spring chambers are the two scenarios that are taken into consideration. In these situations, the air inside the spring chambers compresses and expands, resulting in nonlinear spring restoring forces. The MATLAB/Simulink software environment is used to build a numerical simulation model for the dynamic behavior of the air spring. To quantify the values of the stiffnesses of the proposed models, a numerical solution is run over time for various values of the design parameters. The isentropic process case has a higher dynamic air spring stiffness than the isothermal process case, according to the results. The size of the air spring chamber and the area of the air spring piston influence the air spring stiffness in both situations. It is demonstrated that the stiffness of the air spring increases linearly with increasing piston area and decreases nonlinearly with increasing air chamber length. As long as the ratio of the vibration’s amplitude to the air spring’s chamber length is small, there is good agreement in both scenarios between the linearized model and the full nonlinear model. This implies that linear modeling is a reasonable approximation of the complete nonlinear model in this particular scenario.展开更多
Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being c...Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.展开更多
In this paper, the ability of the distinct lattice spring model (DLSM) for modeling stress wave propagation in rocks was fully investigated. The influence of particle size on simulation of different types of stress ...In this paper, the ability of the distinct lattice spring model (DLSM) for modeling stress wave propagation in rocks was fully investigated. The influence of particle size on simulation of different types of stress waves (e.g. one-dimensional (1D) P-wave, 1D S-wave and two-dimensional (2D) cylindrical wave) was studied through comparing results predicted by the DLSM with different mesh ratios (It) and those obtained from the corresponding analytical solutions. Suggested values of lr were obtained for modeling these stress waves accurately. Moreover, the weak material layer method and virtual joint plane method were used to model P-wave and S-wave propagating through a single discontinuity. The results were compared with the classical analytical solutions, indicating that the virtual joint plane method can give better results and is recommended. Finally, some remarks of the DLSM on modeling of stress wave propagation in rocks were provided.展开更多
Recently, a four-dimensional lattice spring model(4D-LSM) was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this work, some as...Recently, a four-dimensional lattice spring model(4D-LSM) was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this work, some aspects of the 4D-LSM on solving problems in geomechanics are investigated, such as the ability to reproduce elastic properties of geomaterials, the capability of solving heterogeneous problems,the accuracy on modelling stress wave propagation, the ability to solve dynamic fracturing and the parallel computational efficiency. Our results indicate that the 4D-LSM is promising to deal with problems in geomechanics.展开更多
This study presents a comprehensive full dynamic model designed for simulating liquid sloshing behavior within cylindrical tank structures. The model employs a discretization approach, representing the liquid as a net...This study presents a comprehensive full dynamic model designed for simulating liquid sloshing behavior within cylindrical tank structures. The model employs a discretization approach, representing the liquid as a network of interconnected spring-damper-mass systems. Key aspects include the adaptation of liquid discretization techniques to cylindrical lateral cross-sections and the calculation of stiffness and damping coefficients. External forces, simulating various vehicle maneuvers, are also integrated into the model. The resulting system of equations is solved using Maple Software with the Runge-Kutta-Fehlberg method. This model enables accurate prediction of liquid displacement and pressure forces, offering valuable insights for tank design and fluid dynamics applications. Ongoing refinement aims to broaden its applicability across different liquid types and tank geometries.展开更多
The effects of karst caves on tunnel stability were numerically investigated using the distinct lattice spring model(DLSM).The DLSM was validated by investigating the mechanical behavior of Brazilian discs with variou...The effects of karst caves on tunnel stability were numerically investigated using the distinct lattice spring model(DLSM).The DLSM was validated by investigating the mechanical behavior of Brazilian discs with various sizes of central circular holes.Then,the effects of karst cave on U-shaped tunnel were investigated under various karst caves positions(top,bottom,and right side of the tunnel),tunnelcave distances(0.5-4 times the radius of the tunnel arc),and cave shapes(circular,rectangular flat,and rectangular vertical caves).The failure processes of the tunnel under those various conditions were analyzed and both the failure process and the final failure patterns of the tunnel were discussed.Numerical simulation demonstrated that karst caves around the tunnel could weaken the stability of the tunnel,indicating tunnel-cave distance effects.The closer the cave to the tunnel,the weaker the tunnel under loading.This effect was not significant when the tunnel-cave distance(d)was larger than three times the tunnel arc radius(R).In addition,the final failure pattern of the tunnel and its surrounding rock mass were dependent on both the position and the size of the cave.The larger the cave,the weaker the tunnel and its surrounding rock mass.Furthermore,compared with those cases with top and bottom caves,the tunnel with a right side cave had more impacts on tunnel stability.The main research finding could help engineers carry out stability analysis on tunnels in karst areas and take effective measures to enhance tunnel stability.展开更多
We use front tracking data structures and functions to model the dynamic evolution of fabric surface.We represent the fabric surface by a triangulated mesh with preset equilibrium side length.The stretching and wrinkl...We use front tracking data structures and functions to model the dynamic evolution of fabric surface.We represent the fabric surface by a triangulated mesh with preset equilibrium side length.The stretching and wrinkling of the surface are modeled by the mass-spring system.The external driving force is added to the fabric motion through the"Impulse method"which computes the velocity of the point mass by superposition of momentum.The mass-spring system is a nonlinear ODE system.Added by the numerical and computational analysis,we show that the spring system has an upper bound of the eigen frequency.We analyzed the system by considering two spring models and we proved in one case that all eigenvalues are imaginary and there exists an upper bound for the eigen-frequency.This upper bound plays an important role in determining the numerical stability and accuracy of the ODE system.Based on this analysis,we analyzed the numerical accuracy and stability of the nonlinear spring mass system for fabric surface and its tangential and normal motion.We used the fourth order Runge-Kutta method to solve the ODE system and showed that the time step is linearly dependent on the mesh size for the system.展开更多
Effective medium methods for the attribution of micro-structures to macro elastic properties of shales are important for the prediction of sweet spots in the shale-gas production.With X-ray micro-computed tomography(X...Effective medium methods for the attribution of micro-structures to macro elastic properties of shales are important for the prediction of sweet spots in the shale-gas production.With X-ray micro-computed tomography(XMCT),the micro-structures of shale core samples from Longmaxi Formation are visualized and characterized by 3D digital images.As an efficient alternative to conventional effective medium methods for estimating elastic properties,we propose a consistent workflow of lattice spring modeling(LSM)to emulate the digital cores using three types of lattices.Particular attention is paid to investigate the effective Young’s moduli,Poisson’s ratios,and preferred orientations,by uniaxial compression tests along two directions.Within elastic deformation,the impact of lattice arrangements on the anisotropy is even more than those of stress disturbances and micro-structural features.Compared with analytical approximations and theoretical predictions,the LSM numerical scheme shows general applicability for heterogeneous porous rocks.展开更多
A stranded wires helical spring is formed of a multilayer and coaxial strand of several wires twisted together with the same direction of spiral. Compared with the conventional single wire spring, the stranded wires h...A stranded wires helical spring is formed of a multilayer and coaxial strand of several wires twisted together with the same direction of spiral. Compared with the conventional single wire spring, the stranded wires helical spring has the notable predominance in strength, damping and vibration reduction, which is usually used in aircraft engines, automatic weapons, etc. However, due to its complicated structure, the precise computation of its strength and rigidity need be a correct mathematical model, which then will be imported to finite element analysis software for solutions. Equations on solving geometric parameters, such as external diameters of strands and screw pitches of wires, are put forward in the paper. It also proposes a novel methodology on solving geometric parameters and establishing entity models of the stranded wires helical spring, which provides foundation of computing mechanical parameters by FEA. Then mathematical models on the centre line of the strand and the surface curve of each wire, after closing two ends in a spring, are proposed. Finally, geometric parameters are solved in a case study, and a 3D entity model of a spring with 3 layers and 16 wires is established, which has validated the accuracy of the proposed methodology and the 3D entity mathematical model. The method provides a new way to design stranded wire helical spring.展开更多
Recently published results of field and laboratory experiments on the seismic/acoustic response to injection of direct current (DC) pulses into the Earth crust or stressed rock samples raised a question on a possibi...Recently published results of field and laboratory experiments on the seismic/acoustic response to injection of direct current (DC) pulses into the Earth crust or stressed rock samples raised a question on a possibility of electrical earthquake triggering. A physical mechanism of the considered phenomenon is not clear yet in view of the very low current density (10-7-10-s A/m^2) generated by the pulsed power systems at the epicenter depth (5-10 km) of local earthquakes occurred just after the current injection. The paper describes results of laboratory "earthquake" triggering by DC pulses under conditions of a spring-block model simulated the seismogenic fault. It is experimentally shown that the electric triggering of the laboratory "earthquake" (sharp slip of a movable block of the spring-block system) is possible only within a range of subcritical state of the system, when the shear stress between the movable and fixed blocks obtains 0.98-0.99 of its critical value. The threshold of electric triggering action is about 20 A/m^2 that is 7-8 orders of magnitude higher than estimated electric current density for Bishkek test site (Northern Tien Shan, Kirghizia) where the seismic response to the man-made electric action was observed. In this connection, the electric triggering phenomena may be explained by contraction of electric current in the narrow conductive areas of the faults and the corresponding increase in current density or by involving the secondary triggering mechanisms like electromagnetic stimulation of conductive fluid migration into the fault area resulted in decrease in the fault strength properties.展开更多
The dynamic behavior of the stranded wire helical spring is described by a modified Bouc-Wen model while the model parameters must be identified using an identification method and experimental data. Existing identific...The dynamic behavior of the stranded wire helical spring is described by a modified Bouc-Wen model while the model parameters must be identified using an identification method and experimental data. Existing identification methods usually relies either solely nonlinear iterative algorithms or manually trial and error. Therefore, the identification process can be rather time consuming and effort taking. As a result, these methods are not ideal for engineering applications. To come up with a more practical method, a three-stage identification method is proposed. Periodic loading and identification simulations are carried out to verify the effectiveness of the proposed method. Noises are added to the simulated data to test the performance of the proposed method when dealing with noise contaminated data. The simulation results indicate that the proposed method is able to give satisfying results when the noise levels are set to be 0.01, 0.03, 0.05 and 0.07. In addition, the proposed method is also applied to experimental data and compared with an existing method. The experimental data is acquired through a periodic loading test. The experiment results suggest that the proposed method features better accuracy compared with the existing method. An effective approach is proposed for identifying the model parameters of the stranded wire helical spring.展开更多
The present study evaluates the precipitation variability over the South China Sea(SCS) and its relationship to tropical Indo-Pacific SST anomalies during spring-to-summer transition(April–May–June,AMJ) simulate...The present study evaluates the precipitation variability over the South China Sea(SCS) and its relationship to tropical Indo-Pacific SST anomalies during spring-to-summer transition(April–May–June,AMJ) simulated by 23 Intergovernmental Panel on Climate Change Coupled Model Intercomparison Project Phase 5 coupled models.Most of the models have the capacity to capture the AMJ precipitation variability in the SCS.The precipitation and SST anomaly(SSTA) distribution in the SCS,tropical Pacific Ocean(TPO),and tropical Indian Ocean(TIO) domains is evaluated based on the pattern correlation coefficients between model simulations and observations.The analysis leads to several points of note.First,the performance of the SCS precipitation anomaly pattern in AMJ is model dependent.Second,the SSTA pattern in the TPO and TIO is important for capturing the AMJ SCS precipitation variability.Third,a realistic simulation of the western equatorial Pacific(WEP) and local SST impacts is necessary for reproducing the AMJ SCS precipitation variability in some models.Fourth,the overly strong WEP SST impacts may disrupt the relationship between the SCS precipitation and the TPO–TIO SST.Further work remains to be conducted to unravel the specific reasons for the discrepancies between models and observations in various aspects.展开更多
Audio applications such as mobile communication and hearing aid devices demand a small size but high performance, stable and low cost microphone to reproduce a high quality sound. Capacitive microphone can be designed...Audio applications such as mobile communication and hearing aid devices demand a small size but high performance, stable and low cost microphone to reproduce a high quality sound. Capacitive microphone can be designed to fulfill such requirements with some trade-offs between sensitivity, operating frequency range, and noise level mainly due to the effect of device structure dimensions and viscous damping. Smaller microphone size and air gap will gradually decrease its sensitivity and increase the viscous damping. The aim of this research was to develop a mathematical model of a spring-supported diaphragm capacitive MEMS microphone as well as an approach to optimize a microphone’s performance. Because of the complex shapes in this latest type of diaphragm design trend, analytical modelling has not been previously attempted. A novel diaphragm design is proposed that offers increased mechanical sensitivity of a capacitive microphone by reducing its diaphragm stiffness. A lumped element model of the spring-supported diaphragm microphone is developed to analyze the complex relations between the microphone performance factors and to find the optimum dimensions based on the design requirements. It is shown analytically that the spring dimensions of the spring-supported diaphragm do not have large effects on the microphone performance com pared to the diaphragm and backplate size, diaphragm thickness, and air-gap distance. A 1 mm2 spring-supported diaphragm microphone is designed using several optimized performance parameters to give a –3 dB operating bandwidth of 10.2 kHz, a sensitivity of 4.67 mV/Pa (–46.5 dB ref. 1 V/Pa at 1 kHz using a bias voltage of 3 V), a pull-in voltage of 13 V, and a thermal noise of –22 dBA SPL.展开更多
The yellowed-leaf rate is one of the important variables in simulation models for thegrowth of spring wheat. Based on the field experiments (1985-1988), the evolution of yellowed-leafrate of spring wheat is analyzed. ...The yellowed-leaf rate is one of the important variables in simulation models for thegrowth of spring wheat. Based on the field experiments (1985-1988), the evolution of yellowed-leafrate of spring wheat is analyzed. The functional relationship between the yellowing process of greenleaves and the development stages of spring wheat is established. Based on modelling and correctingfor the yellowing proass of green leaves affected by temperature and moisture, the synthetic modelfor simulating the dynaniical evolution of yellowed-leaf rate is constructed. The numerical experi-inents show that the result of the modelling is satisfactory.展开更多
Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). ...Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.展开更多
Geophysical surveys utilising magnetic and electromagnetic techniques were carried out at the Siloam hot spring. The spring is in the Soutpansberg Basin in the northern part of South Africa. The research was to invest...Geophysical surveys utilising magnetic and electromagnetic techniques were carried out at the Siloam hot spring. The spring is in the Soutpansberg Basin in the northern part of South Africa. The research was to investigate groundwater bearing structures at the hot spring. Magnetic survey results showed that the spring occurs between two north dipping dykes. The two dykes could be faulted segments of a single dyke or sill. Magnetic susceptibility results highlighted the presence of metamorphic and volcanic rocks. Electromagnetic survey results showed that the hot spring was within a roughly east to west trending, zone with high electrical conductivity values. Based on the survey results, water is exploiting fractures in the dyke or sill.展开更多
In the model developed in this paper, taking the characters and requirements of meteorological services into account, some conventional meteorological observations which are easy to be obtained have been ch.osen, and ...In the model developed in this paper, taking the characters and requirements of meteorological services into account, some conventional meteorological observations which are easy to be obtained have been ch.osen, and mathematical equations describing micro-growth processes of crops have been established on the basis of the field experiments, laboratorial analysis and computer's modelling tests with time interval of ten-days for several years (1987-1989), in accordance with the known biological and physical rules and corresponding reference literatures. It is a preliminary simplified simulation model of spring wheat growth in optimal water and nutrient conditions. The field experiments show that simulation results of this simplified model are satisfactory. The potential operational application and theoretical sense are significant in the meteorological forecast of yield and in the assessment of influences of climatic change on agriculture.展开更多
In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model wa...In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation.Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature.The model agreed well with the experimental data in the literature.The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power.According to parameter analyses,the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.展开更多
Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production...Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local environment and field management. Based on 22-yr (1990-2011) long-term experimental data on black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China, the decision support system for an agro-technology transfer (DSSAT)-CERES-Maize model was applied to simulate the yield by BSP of spring maize (Zea mays L.) to examine the effects of long-term fertilization on changes of BSP and explore the mechanisms of BSP increasing. Five treatments were examined: (1) no-fertilization control (control); (2) chemical nitrogen, phosphorus, and potassium (NPK); (3) NPK plus farmyard manure (NPKM); (4) 1.5 time of NPKM (1.5NPKM) and (5) NPK plus straw (NPKS). Results showed that after 22-yr fertilization, the yield by BSP of spring maize significantly increased 78.0, 101.2, and 69.4% under the NPKM, 1.5NPKM and NPKS, respectively, compared to the initial value (in 1992), but not significant under NPK (26.9% increase) and the control (8.9% decrease). The contribution percentage of BSP showed a significant rising trend (P〈0.05) under 1.5NPKM. The average contribution percentage of BSP among fertilizations ranged from 74.4 to 84.7%, and ranked as 1.5NPKM〉NPKM〉NPK〉NPKS, indicating that organic manure combined with chemical fertilizers (I.5NPKM and NPKM) could more effectively increase BSP compared with the inorganic fertilizer application alone (NPK) in the black soil. This study showed that soil organic matter (SOM) was the key factor among various fertility factors that could affect BSP in the black soil, and total N, total P and/or available P also played important role in BSP increasing. Compared with the chemical fertilization, a balanced chemical plus manure or straw fertilization (NPKM or NPKS) not only increased the concentrations of soil nutrient, but also improved the soil physical properties, and structure and diversity of soil microbial population, resulting in an iincrease of BSP. We recommend that a balanced chemical plus manure or straw fertilization (NPKM or NPKS) should be the fertilization practices to enhance spring maize yield and improve BSP in the black soil of Northeast China.展开更多
文摘This study predicts the characteristics of a compressible polytropic air spring model. A second-order nonlinear autonomous air spring model is presented. The proposed model is based on the assumption that polytropic processes occur. Isothermal and isentropic compression and expansion of the air within the spring chambers are the two scenarios that are taken into consideration. In these situations, the air inside the spring chambers compresses and expands, resulting in nonlinear spring restoring forces. The MATLAB/Simulink software environment is used to build a numerical simulation model for the dynamic behavior of the air spring. To quantify the values of the stiffnesses of the proposed models, a numerical solution is run over time for various values of the design parameters. The isentropic process case has a higher dynamic air spring stiffness than the isothermal process case, according to the results. The size of the air spring chamber and the area of the air spring piston influence the air spring stiffness in both situations. It is demonstrated that the stiffness of the air spring increases linearly with increasing piston area and decreases nonlinearly with increasing air chamber length. As long as the ratio of the vibration’s amplitude to the air spring’s chamber length is small, there is good agreement in both scenarios between the linearized model and the full nonlinear model. This implies that linear modeling is a reasonable approximation of the complete nonlinear model in this particular scenario.
基金supported by the National Research Foundation of Korea Grant founded by the Korean Government(MEST)(Grant No.NRF-2013R1A1A4A01011445)
文摘Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.
基金supported by the Australian Research Council (Grant No. DE130100457)
文摘In this paper, the ability of the distinct lattice spring model (DLSM) for modeling stress wave propagation in rocks was fully investigated. The influence of particle size on simulation of different types of stress waves (e.g. one-dimensional (1D) P-wave, 1D S-wave and two-dimensional (2D) cylindrical wave) was studied through comparing results predicted by the DLSM with different mesh ratios (It) and those obtained from the corresponding analytical solutions. Suggested values of lr were obtained for modeling these stress waves accurately. Moreover, the weak material layer method and virtual joint plane method were used to model P-wave and S-wave propagating through a single discontinuity. The results were compared with the classical analytical solutions, indicating that the virtual joint plane method can give better results and is recommended. Finally, some remarks of the DLSM on modeling of stress wave propagation in rocks were provided.
基金financially supported by the National Natural Science Foundation of China (Grant No. 1177020290)
文摘Recently, a four-dimensional lattice spring model(4D-LSM) was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this work, some aspects of the 4D-LSM on solving problems in geomechanics are investigated, such as the ability to reproduce elastic properties of geomaterials, the capability of solving heterogeneous problems,the accuracy on modelling stress wave propagation, the ability to solve dynamic fracturing and the parallel computational efficiency. Our results indicate that the 4D-LSM is promising to deal with problems in geomechanics.
文摘This study presents a comprehensive full dynamic model designed for simulating liquid sloshing behavior within cylindrical tank structures. The model employs a discretization approach, representing the liquid as a network of interconnected spring-damper-mass systems. Key aspects include the adaptation of liquid discretization techniques to cylindrical lateral cross-sections and the calculation of stiffness and damping coefficients. External forces, simulating various vehicle maneuvers, are also integrated into the model. The resulting system of equations is solved using Maple Software with the Runge-Kutta-Fehlberg method. This model enables accurate prediction of liquid displacement and pressure forces, offering valuable insights for tank design and fluid dynamics applications. Ongoing refinement aims to broaden its applicability across different liquid types and tank geometries.
基金the Open Foundation of MOE Key Laboratory of Engineering Structures of Heavy Haul Railway(Central South University)(2020JZZ02)National Natural Science Foundation of China(No(s).51978677,51708564,51678578)Fundamental Research Funds for the Central Universities(No.19lgzd42)。
文摘The effects of karst caves on tunnel stability were numerically investigated using the distinct lattice spring model(DLSM).The DLSM was validated by investigating the mechanical behavior of Brazilian discs with various sizes of central circular holes.Then,the effects of karst cave on U-shaped tunnel were investigated under various karst caves positions(top,bottom,and right side of the tunnel),tunnelcave distances(0.5-4 times the radius of the tunnel arc),and cave shapes(circular,rectangular flat,and rectangular vertical caves).The failure processes of the tunnel under those various conditions were analyzed and both the failure process and the final failure patterns of the tunnel were discussed.Numerical simulation demonstrated that karst caves around the tunnel could weaken the stability of the tunnel,indicating tunnel-cave distance effects.The closer the cave to the tunnel,the weaker the tunnel under loading.This effect was not significant when the tunnel-cave distance(d)was larger than three times the tunnel arc radius(R).In addition,the final failure pattern of the tunnel and its surrounding rock mass were dependent on both the position and the size of the cave.The larger the cave,the weaker the tunnel and its surrounding rock mass.Furthermore,compared with those cases with top and bottom caves,the tunnel with a right side cave had more impacts on tunnel stability.The main research finding could help engineers carry out stability analysis on tunnels in karst areas and take effective measures to enhance tunnel stability.
基金the US Army Research Office under the ARO grant award W911NF0910306the Department of Mathematics,National Taiwan University and to acknowledge the generous support from National Science Council of The Republic of China,Grant NSC 101-2811-M-002-006 on his sabbatical visit during which this work is accomplished.
文摘We use front tracking data structures and functions to model the dynamic evolution of fabric surface.We represent the fabric surface by a triangulated mesh with preset equilibrium side length.The stretching and wrinkling of the surface are modeled by the mass-spring system.The external driving force is added to the fabric motion through the"Impulse method"which computes the velocity of the point mass by superposition of momentum.The mass-spring system is a nonlinear ODE system.Added by the numerical and computational analysis,we show that the spring system has an upper bound of the eigen frequency.We analyzed the system by considering two spring models and we proved in one case that all eigenvalues are imaginary and there exists an upper bound for the eigen-frequency.This upper bound plays an important role in determining the numerical stability and accuracy of the ODE system.Based on this analysis,we analyzed the numerical accuracy and stability of the nonlinear spring mass system for fabric surface and its tangential and normal motion.We used the fourth order Runge-Kutta method to solve the ODE system and showed that the time step is linearly dependent on the mesh size for the system.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,the National Natural Sciences Foundation and China Postdoctoral Science Foundation(Grant Nos.XDA14010303,XDB10010400,41804134,2018M640176).
文摘Effective medium methods for the attribution of micro-structures to macro elastic properties of shales are important for the prediction of sweet spots in the shale-gas production.With X-ray micro-computed tomography(XMCT),the micro-structures of shale core samples from Longmaxi Formation are visualized and characterized by 3D digital images.As an efficient alternative to conventional effective medium methods for estimating elastic properties,we propose a consistent workflow of lattice spring modeling(LSM)to emulate the digital cores using three types of lattices.Particular attention is paid to investigate the effective Young’s moduli,Poisson’s ratios,and preferred orientations,by uniaxial compression tests along two directions.Within elastic deformation,the impact of lattice arrangements on the anisotropy is even more than those of stress disturbances and micro-structural features.Compared with analytical approximations and theoretical predictions,the LSM numerical scheme shows general applicability for heterogeneous porous rocks.
基金supported by National Natural Science Foundation for Distinguished Young Scholar of China (Grant No. 50925518)National Natural Science Foundation of China (Grant No. 50775226)+1 种基金Key Project of Ministry of Education of China(Grant No. 109129)Chongqing Municipal Key Scientific and Technological Project of China (Grant No. CSTC2009AC3049)
文摘A stranded wires helical spring is formed of a multilayer and coaxial strand of several wires twisted together with the same direction of spiral. Compared with the conventional single wire spring, the stranded wires helical spring has the notable predominance in strength, damping and vibration reduction, which is usually used in aircraft engines, automatic weapons, etc. However, due to its complicated structure, the precise computation of its strength and rigidity need be a correct mathematical model, which then will be imported to finite element analysis software for solutions. Equations on solving geometric parameters, such as external diameters of strands and screw pitches of wires, are put forward in the paper. It also proposes a novel methodology on solving geometric parameters and establishing entity models of the stranded wires helical spring, which provides foundation of computing mechanical parameters by FEA. Then mathematical models on the centre line of the strand and the surface curve of each wire, after closing two ends in a spring, are proposed. Finally, geometric parameters are solved in a case study, and a 3D entity model of a spring with 3 layers and 16 wires is established, which has validated the accuracy of the proposed methodology and the 3D entity mathematical model. The method provides a new way to design stranded wire helical spring.
基金funded by Russian Foundation for Basic Research according to research project No.15-55-53104National Natural Science Foundation of China according to International cooperation project No.41511130032
文摘Recently published results of field and laboratory experiments on the seismic/acoustic response to injection of direct current (DC) pulses into the Earth crust or stressed rock samples raised a question on a possibility of electrical earthquake triggering. A physical mechanism of the considered phenomenon is not clear yet in view of the very low current density (10-7-10-s A/m^2) generated by the pulsed power systems at the epicenter depth (5-10 km) of local earthquakes occurred just after the current injection. The paper describes results of laboratory "earthquake" triggering by DC pulses under conditions of a spring-block model simulated the seismogenic fault. It is experimentally shown that the electric triggering of the laboratory "earthquake" (sharp slip of a movable block of the spring-block system) is possible only within a range of subcritical state of the system, when the shear stress between the movable and fixed blocks obtains 0.98-0.99 of its critical value. The threshold of electric triggering action is about 20 A/m^2 that is 7-8 orders of magnitude higher than estimated electric current density for Bishkek test site (Northern Tien Shan, Kirghizia) where the seismic response to the man-made electric action was observed. In this connection, the electric triggering phenomena may be explained by contraction of electric current in the narrow conductive areas of the faults and the corresponding increase in current density or by involving the secondary triggering mechanisms like electromagnetic stimulation of conductive fluid migration into the fault area resulted in decrease in the fault strength properties.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375508,51375517)the Key Technologies R&D Program of China(Grant No.2012BAF12B09)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(Grant No.IRT1196)
文摘The dynamic behavior of the stranded wire helical spring is described by a modified Bouc-Wen model while the model parameters must be identified using an identification method and experimental data. Existing identification methods usually relies either solely nonlinear iterative algorithms or manually trial and error. Therefore, the identification process can be rather time consuming and effort taking. As a result, these methods are not ideal for engineering applications. To come up with a more practical method, a three-stage identification method is proposed. Periodic loading and identification simulations are carried out to verify the effectiveness of the proposed method. Noises are added to the simulated data to test the performance of the proposed method when dealing with noise contaminated data. The simulation results indicate that the proposed method is able to give satisfying results when the noise levels are set to be 0.01, 0.03, 0.05 and 0.07. In addition, the proposed method is also applied to experimental data and compared with an existing method. The experimental data is acquired through a periodic loading test. The experiment results suggest that the proposed method features better accuracy compared with the existing method. An effective approach is proposed for identifying the model parameters of the stranded wire helical spring.
基金supported by the National Key Basic Research Program of China(Grant No.2014CB953902)the support of the Hong Kong Research Grants Council(Grant No.CUHK403612)+4 种基金the National Natural Science Foundation of China(Grants Nos.41275081 and 41475081)a Chinese University of Hong Kong direct grant(Grant No.4052057)the support of a Chinese Academy of Sciences project(Grant No.XDA11010402)the National Natural Science Foundation of China(Grant Nos.41305065 and 41305068)the support of the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology of Chinese Academy of Sciences(Grant No.LTO1203)
文摘The present study evaluates the precipitation variability over the South China Sea(SCS) and its relationship to tropical Indo-Pacific SST anomalies during spring-to-summer transition(April–May–June,AMJ) simulated by 23 Intergovernmental Panel on Climate Change Coupled Model Intercomparison Project Phase 5 coupled models.Most of the models have the capacity to capture the AMJ precipitation variability in the SCS.The precipitation and SST anomaly(SSTA) distribution in the SCS,tropical Pacific Ocean(TPO),and tropical Indian Ocean(TIO) domains is evaluated based on the pattern correlation coefficients between model simulations and observations.The analysis leads to several points of note.First,the performance of the SCS precipitation anomaly pattern in AMJ is model dependent.Second,the SSTA pattern in the TPO and TIO is important for capturing the AMJ SCS precipitation variability.Third,a realistic simulation of the western equatorial Pacific(WEP) and local SST impacts is necessary for reproducing the AMJ SCS precipitation variability in some models.Fourth,the overly strong WEP SST impacts may disrupt the relationship between the SCS precipitation and the TPO–TIO SST.Further work remains to be conducted to unravel the specific reasons for the discrepancies between models and observations in various aspects.
文摘Audio applications such as mobile communication and hearing aid devices demand a small size but high performance, stable and low cost microphone to reproduce a high quality sound. Capacitive microphone can be designed to fulfill such requirements with some trade-offs between sensitivity, operating frequency range, and noise level mainly due to the effect of device structure dimensions and viscous damping. Smaller microphone size and air gap will gradually decrease its sensitivity and increase the viscous damping. The aim of this research was to develop a mathematical model of a spring-supported diaphragm capacitive MEMS microphone as well as an approach to optimize a microphone’s performance. Because of the complex shapes in this latest type of diaphragm design trend, analytical modelling has not been previously attempted. A novel diaphragm design is proposed that offers increased mechanical sensitivity of a capacitive microphone by reducing its diaphragm stiffness. A lumped element model of the spring-supported diaphragm microphone is developed to analyze the complex relations between the microphone performance factors and to find the optimum dimensions based on the design requirements. It is shown analytically that the spring dimensions of the spring-supported diaphragm do not have large effects on the microphone performance com pared to the diaphragm and backplate size, diaphragm thickness, and air-gap distance. A 1 mm2 spring-supported diaphragm microphone is designed using several optimized performance parameters to give a –3 dB operating bandwidth of 10.2 kHz, a sensitivity of 4.67 mV/Pa (–46.5 dB ref. 1 V/Pa at 1 kHz using a bias voltage of 3 V), a pull-in voltage of 13 V, and a thermal noise of –22 dBA SPL.
文摘The yellowed-leaf rate is one of the important variables in simulation models for thegrowth of spring wheat. Based on the field experiments (1985-1988), the evolution of yellowed-leafrate of spring wheat is analyzed. The functional relationship between the yellowing process of greenleaves and the development stages of spring wheat is established. Based on modelling and correctingfor the yellowing proass of green leaves affected by temperature and moisture, the synthetic modelfor simulating the dynaniical evolution of yellowed-leaf rate is constructed. The numerical experi-inents show that the result of the modelling is satisfactory.
文摘Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.
文摘Geophysical surveys utilising magnetic and electromagnetic techniques were carried out at the Siloam hot spring. The spring is in the Soutpansberg Basin in the northern part of South Africa. The research was to investigate groundwater bearing structures at the hot spring. Magnetic survey results showed that the spring occurs between two north dipping dykes. The two dykes could be faulted segments of a single dyke or sill. Magnetic susceptibility results highlighted the presence of metamorphic and volcanic rocks. Electromagnetic survey results showed that the hot spring was within a roughly east to west trending, zone with high electrical conductivity values. Based on the survey results, water is exploiting fractures in the dyke or sill.
文摘In the model developed in this paper, taking the characters and requirements of meteorological services into account, some conventional meteorological observations which are easy to be obtained have been ch.osen, and mathematical equations describing micro-growth processes of crops have been established on the basis of the field experiments, laboratorial analysis and computer's modelling tests with time interval of ten-days for several years (1987-1989), in accordance with the known biological and physical rules and corresponding reference literatures. It is a preliminary simplified simulation model of spring wheat growth in optimal water and nutrient conditions. The field experiments show that simulation results of this simplified model are satisfactory. The potential operational application and theoretical sense are significant in the meteorological forecast of yield and in the assessment of influences of climatic change on agriculture.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51276012)
文摘In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation.Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature.The model agreed well with the experimental data in the literature.The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power.According to parameter analyses,the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.
基金supported by the National 973 Program of China (2011CB100501)the National 863 Program of China(2013AA102901)+1 种基金the Special Fund for Agro-Scientific Research in the Public Interest, China (201203077)the Science and Technology Project for Grain Production, China (2011BAD16B15)
文摘Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local environment and field management. Based on 22-yr (1990-2011) long-term experimental data on black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China, the decision support system for an agro-technology transfer (DSSAT)-CERES-Maize model was applied to simulate the yield by BSP of spring maize (Zea mays L.) to examine the effects of long-term fertilization on changes of BSP and explore the mechanisms of BSP increasing. Five treatments were examined: (1) no-fertilization control (control); (2) chemical nitrogen, phosphorus, and potassium (NPK); (3) NPK plus farmyard manure (NPKM); (4) 1.5 time of NPKM (1.5NPKM) and (5) NPK plus straw (NPKS). Results showed that after 22-yr fertilization, the yield by BSP of spring maize significantly increased 78.0, 101.2, and 69.4% under the NPKM, 1.5NPKM and NPKS, respectively, compared to the initial value (in 1992), but not significant under NPK (26.9% increase) and the control (8.9% decrease). The contribution percentage of BSP showed a significant rising trend (P〈0.05) under 1.5NPKM. The average contribution percentage of BSP among fertilizations ranged from 74.4 to 84.7%, and ranked as 1.5NPKM〉NPKM〉NPK〉NPKS, indicating that organic manure combined with chemical fertilizers (I.5NPKM and NPKM) could more effectively increase BSP compared with the inorganic fertilizer application alone (NPK) in the black soil. This study showed that soil organic matter (SOM) was the key factor among various fertility factors that could affect BSP in the black soil, and total N, total P and/or available P also played important role in BSP increasing. Compared with the chemical fertilization, a balanced chemical plus manure or straw fertilization (NPKM or NPKS) not only increased the concentrations of soil nutrient, but also improved the soil physical properties, and structure and diversity of soil microbial population, resulting in an iincrease of BSP. We recommend that a balanced chemical plus manure or straw fertilization (NPKM or NPKS) should be the fertilization practices to enhance spring maize yield and improve BSP in the black soil of Northeast China.