2020年3月18日中午至夜间,山西、河北、北京、天津和山东等地先后出现阵风10级及以上强风天气。利用风廓线雷达、国家级地面气象观测站和欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)第五代大气...2020年3月18日中午至夜间,山西、河北、北京、天津和山东等地先后出现阵风10级及以上强风天气。利用风廓线雷达、国家级地面气象观测站和欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)第五代大气再分析数据(ECMWF Reanalysis v5,ERA5)等资料,对强风过程的天气学成因进行了分析。结果表明:强风发生在低空暖脊异常发展的热力环境条件下,冷锋自黄土高原下到华北平原,中层锋消,垂直方向上发生“断裂”,低层冷锋先行侵入热低压,在锋生过程中发生。强风具有显著的非地转瞬变特征,低层强冷平流是强变压梯度产生的主要因素,变压风叠加在快速移动的冷锋系统中诱发大风,变压风是重要组成部分;低空动量下传效应引起低层风速波动,但不足以直接诱发强风。展开更多
Disturbance in wind regime and sand erosion deposition balance may lead to burial and eventual vanishing of a site.This study conducted 3D computational fluid dynamics(CFD)simulations to evaluate the effect of a propo...Disturbance in wind regime and sand erosion deposition balance may lead to burial and eventual vanishing of a site.This study conducted 3D computational fluid dynamics(CFD)simulations to evaluate the effect of a proposed city design on the wind environment of the Crescent Spring,a downwind natural heritage site located in Dunhuang,Northwestern China.Satellite terrain data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)Digital Elevation Model(DEM)were used to construct the solid surface model.Steady-state Reynolds Averaged Navier-Stokes equations(RANS)with shear stress transport(SST)k-ωturbulence model were then applied to solve the flow field problems.Land-use changes were modeled implicitly by dividing the underlying surface into different areas and by applying corresponding aerodynamic roughness lengths.Simulations were performed by using cases with different city areas and building heights.Results show that the selected model could capture the surface roughness changes and could adjust wind profile over a large area.Wind profiles varied over the greenfield to the north and over the Gobi land to the east of the spring.Therefore,different wind speed reduction effects were observed from various city construction scenarios.The current city design would lead to about 2 m/s of wind speed reduction at the downwind city edge and about 1 m/s of wind speed reduction at the north of the spring at 35-m height.Reducing the city height in the north greenfield area could efficiently eliminate the negative effects of wind spee.By contrast,restricting the city area worked better in the eastern Gobi area compared with other parts of the study area.Wind speed reduction in areas near the spring could be limited to 0.1 m/s by combining these two abatement strategies.The CFD method could be applied to simulate the wind environment affected by other land-use changes over a large terrain.展开更多
文摘2020年3月18日中午至夜间,山西、河北、北京、天津和山东等地先后出现阵风10级及以上强风天气。利用风廓线雷达、国家级地面气象观测站和欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)第五代大气再分析数据(ECMWF Reanalysis v5,ERA5)等资料,对强风过程的天气学成因进行了分析。结果表明:强风发生在低空暖脊异常发展的热力环境条件下,冷锋自黄土高原下到华北平原,中层锋消,垂直方向上发生“断裂”,低层冷锋先行侵入热低压,在锋生过程中发生。强风具有显著的非地转瞬变特征,低层强冷平流是强变压梯度产生的主要因素,变压风叠加在快速移动的冷锋系统中诱发大风,变压风是重要组成部分;低空动量下传效应引起低层风速波动,但不足以直接诱发强风。
基金supported by the National Basic Research Program of China(2012CB026105)the National Natural Science Foundation of China(41201003,41071009)the China Postdoctoral Science Foundation(2012M52819)
文摘Disturbance in wind regime and sand erosion deposition balance may lead to burial and eventual vanishing of a site.This study conducted 3D computational fluid dynamics(CFD)simulations to evaluate the effect of a proposed city design on the wind environment of the Crescent Spring,a downwind natural heritage site located in Dunhuang,Northwestern China.Satellite terrain data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)Digital Elevation Model(DEM)were used to construct the solid surface model.Steady-state Reynolds Averaged Navier-Stokes equations(RANS)with shear stress transport(SST)k-ωturbulence model were then applied to solve the flow field problems.Land-use changes were modeled implicitly by dividing the underlying surface into different areas and by applying corresponding aerodynamic roughness lengths.Simulations were performed by using cases with different city areas and building heights.Results show that the selected model could capture the surface roughness changes and could adjust wind profile over a large area.Wind profiles varied over the greenfield to the north and over the Gobi land to the east of the spring.Therefore,different wind speed reduction effects were observed from various city construction scenarios.The current city design would lead to about 2 m/s of wind speed reduction at the downwind city edge and about 1 m/s of wind speed reduction at the north of the spring at 35-m height.Reducing the city height in the north greenfield area could efficiently eliminate the negative effects of wind spee.By contrast,restricting the city area worked better in the eastern Gobi area compared with other parts of the study area.Wind speed reduction in areas near the spring could be limited to 0.1 m/s by combining these two abatement strategies.The CFD method could be applied to simulate the wind environment affected by other land-use changes over a large terrain.